The 18th International Conference on Sciences and Techniques

of Automatic Control and Computer Engineering
December 21-23, 2017, Monastir, Tunisia

A Low-overhead Fault tolerant
Technique for TSV-based Interconnects
in 3D-IC Systems

Abderazek Ben Abdallah, Khanh N. Dang, and Yuichi Okuyama
Adaptive Systems Labratory

Graduate School of Computer Science and Engineering
The University of Aizu, Aizu-Wakamatsu 965-8580, Japan

Email: benab@u-aizu.ac.jp

Website: http://adaptive.u-aizu.ac.jp

dap,

wledg,

~x-‘<° ¢ 5
f’m\.

|Z|UNIVERSITY 3|

% OF——"3)
\MZU__.//\‘

1993



mailto:benab@u-aizu.ac.jp
http://adaptive.u-aizu.ac.jp/

Outlines

* Era of Multicore Computing & 3D-IC

Integration

* TSV-cluster Defects Recovery in Highly
Reliable 3D-NoC

* Design Evaluation and Analysis

* Concluding Remarks

22 December, 2017



Outlines

* Era of Multicore Computing & 3D-IC

Integration

22 December, 2017



Era of Multi/Many-core processing

Constant increase of the number of cores 2 Interconnect delay becomes the
multi/many-core processing [Batten2014]. major challenge [EI-Moursy2005].
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Data collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, C. Batten

To keep up with demands on computational power, we need to:

* Increase parallelism.

* Provide an efficient and low-power interconnect infrastructure to achieve better
scalability, bandwidth, and reliability.
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Design Challenges of Manycore systems
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Challenge on parallelism and power budget on application speedup at 8nm [Esmaeilzadeh2013].
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Emerging Interconnect Paradigms

* RF/Wireless: Replacing on-chip wires by integrated on-chip
antennas to communicate with electromagnetic waves, in
free space or guided medium.

e Carbone Nanotube: Using of carbon-based interconnect to
replace the Cu/low-k technology.

* Photonic: Using photon instead of electron to transfer
data.

* Network-on-Chips: Electronic networks were designed on
a chip to allow parallel data transmission.

* 3D Integration: Stacking multiple layers to obtain smaller
footprints and shorter intra-layers interconnects.

Achraf Ben Ahmed, Tsutomu Yoshinaga, Abderazek Ben Abdallah, “Scalable Photonic Networks-on-Chip Architecture Based on a Novel
Wavelength-Shifting Mechanism”, IEEE Transactions on Emerging Topics in Computing, 2017 (in press). DOI: 10.1109/TETC.2017.2737016

22 December, 2017


http://ieeexplore.ieee.org/document/8003439/
https://doi.org/10.1109/TETC.2017.2737016

3D Integration Technology
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3D Integration technologies: (a) Wire bonding; (b) Solder balls; (c) Through Silicon Vias
(TSVs); (d) Wireless stacking.

Kogge-Stone Adder | Log shifter 16 Log shifter 32
# of input bits 16-bits 32-bits
Delay Power Delay Power Delay Power
2 planes -20.23% -8% -13.4% -6.5% -28.4% -8%
3 planes -23.60% -15% - - - -
4 planes -32.70% -22% - - - -

3D vs 2D Integration: Power consumption and Performance [Vaidyanathan2007].
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Network-on-Chip

Network
Interface

2D Mesh Network-on-Chip 3D Mesh Network-on-Chip

* Processing Elements are attached to routers via Network
Interfaces.

* Network is established from a set of routers in a specific
form and transaction protocols.

* Data transmissions between PEs are handled by routing
inside the network.
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3D Network-on-Chip (3D-NoC)

 Among the existing interconnect infrastructure (e.g. Bus,
Point-to-Point), Network-on-Chip offers high parallelism,
scalability, and high resource usability.

* 3D-IC integration is considered as the future of ICs and can
improve the performance, reduce the footprint, decrease
the power consumption, and allows multiple technologies
integration.

 3D-NoC inherits the benefits of both 2D and 3D-IC
technologies.

* However, due to the vulnerability of deep sub-micron
devices and the high defect rate of TSVs, 3D-NoCs are
predicted to encounter the reliability challenge.




TSV Reliability Issue

* The defect rate of TSVs is considerably high which

negatively impacts the overall yield.

* In addition, due to the nature difficulties on thermal
removal and the stress issue, 3D-ICs may be corrupted
during operation.

Work TSV Pitch Defect Rate Number of TSV | Yield w/o Spare
IBM’05 0.4pm 1.39 x 107° 1K-10K 95%-98%
IMEC’06 10pm 40.0 x 107° 10K 67%
HRI’'07 - 9.75 x 107° 100K 68%
HRI’09 - 7.95 x 107 100K >90%
SAMSUNG’09 - 0.63% 300 15%

Several implementation TSV with the defect rate and the impact on yield rate [Jiang2013].
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TSV Defect Distributions
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Two major TSV defect distribution: (a) Random defect; (b) Cluster defect [Zhao2011, Jiang2013].
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TSV Fault Recovery with Redundancy

(sV) Healthy TSV @) Redundant TSV @) Defected TSV
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Using redundancy to recover the TSV defect.

e Using redundancies with any configuration encounter major
problems:

v'The number of redundancies has to be larger than defected TSV.
Because it cannot be changed after fabrication, designers need to
carefully investigate the defect rate [Zhao2011, Jiang2013].

v'With the cluster defect, defect groups demand a lot of redundancies
while the other may not need any redundancy.

* On the other hand, 3D-NoCs is observed to not always fully
utilize its vertical links (TSV-based connections) [Hwang2011].
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This Work Contribution

* This paper presents a highly scalable and low-overhead
TSV management supported by an adaptive TSV recovery
algorithm for 3D-NoC systems.

* We aim to maintain a graceful performance for 3DNoCs
without the need for redundant links or employing routing
algorithms

* This is different from existing techniques which rely on
correcting the TSV defects by using redundancy or
employing routing algorithms - costly area and power
consumption penalties.
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Outlines

* TSV-cluster Defects Recovery in Highly
Reliable 3D-NoC
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TSV-cluster Defects Recovery Mechanism
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Khanh N. Dang, Akram Ben Ahmed, Yuichi Okuyama, and Abderazek Ben Abdallah, "Scalable Design Methodology and Online Algorithm for TSV-cluster Defects Recovery
in Highly Reliable 3D-NoC Systems”, IEEE Transactions on Emerging Topics in Computing, 2017 (in press). DOI: 10.1109/TETC.2017.2762407
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TSV-cluster Defects Recovery Mechanism

* Instead of grouping TSVs of a router in a same region, we divide
them in four clusters.

* Inside a layer, a router has ability to access its own 4 clusters,
and its 4 neighboring clusters (North, East, South, West).

* The accessibility is controlled by arbiter using tristate gates.
* Router having defected clusters tries to borrow neighboring clusters.

* Every router has a weight:
* Higher weight router can borrow lower weight router.

* Weight values are decided based on traffic or importance of the
vertical connection.

* There is no redundant TSV = reduce the area cost.
* An extended version of this work can be found in [Dang2017].
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TSV Sharing Algorithm

Algorithm 1: TSV Sharing Algorithm.

// Welght values of the current router and its N Inputs of the algorithm are
neighbors .

Input: Weight current, Weightpeignpor[l : N] - the weight of routers and
// Status of current and neighboring TSV-clusters the status of TSV cluster
Input: T'SV_Statuscyrrent[l : N], TSV _Statuspeighbor|l : N]

ﬂmbu o TS V=TI TS teE TS U TIE LYoo TS H
Outpat: RO T[T Output of thg algorithm are
// Current router status — the request signal and the

Output: Router_Stat
utput: frouter_otatus status of router

2 if T'SV_Statuscurrent|i] == “NORMAL” then If all TSV clusters is healthy,
// It is a healthy TSV-cluster = )
3 RQ_link[i] = “NULL" do nothing
4 else
// It is a faulty or borrowed TSV-cluster ]
s find ¢ in 1:N with: If there is
6 Weightpneighvorlc] < Weightcurrent
; Weightneronson[c] is minimal defected/borrowed cluster,
8 and T'SV_Statusneighbor [c] == “NORMAL"; find the healthy candidate
9 if (¢c==NULL) then . .
1 return RQ_link[i] = “NULL’ | with the lowest weight.
11 return ROUtGT‘_St&tUS = “DISABLE” - If there |S an Candidate' Send
12 else .
13 return RQ_link[i] = ¢ the request. Otherwise, the
i: o return Router_Status = “NORMAL vertical connection is
16 end disabled.
17_end
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Example of TSV sharing
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Optimizing the TSV Sharing: Weight adjustment

<1 [R(1,0,0)] [R(1,0,1)] = [R(1,0,2)] <[R(1,0,0)] [R(1,0,1)] = [R(1,0,2)]
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H H w H W 3
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[| Weight =2 % Weight =3, %.Weight =2 | Weight =2 = =t Weight = 3 é_Weight =2
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(a) (b)

Weight adjustment: (a) before; (b) after.

* Weight adjustment: reduce the weight of disabled routers
to help lower weight router be able to borrow clusters.

* Serialization: because no redundancy is used, there some
router having less than 4 clusters.
* To maintain the connectivity, we use Serialization (2:1 or 4:1).

* Fault-tolerant routing: if a router has no available TSV
cluster, the packet to the corresponding connection is re-
routed by using a fault-tolerant routing algorithm.
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Evaluation Methodology

Platform:
* Verilog HDL Parameter Value |
o ; i # ports 7
Synopsys Design Compiler Toasiosy S
e Cadence Innovus Routing Algorithm Look-ahead routing
. Flow Control Stall-Go
Evaluation: Forwarding mechanism Wormhole
. .- Input buffer 4
* Reliability FIit width 44
 Performance (latency,
throughput
I ol
Nangate 45 nm #Packets 1,080 640 8,192 8,192
Technology FreePDK3D45 Packet's Size 10 10 I0° 10
Voltage 11V Benchmark H.264 VOPD MWD PIP
TSV's size 4.06pum X 4.06pm #Tasks 1 4 8 4
TSV oitch ' 0 : Network Size (x,y,x) (3,3,3) (3,2,2) (2,2,3) | (2,2,2)
P pm #Packets 8,400 3,494 1,120 512
Keep-out Zone 15 pm Packet's Size 10 10 10 10
22 December, 2017 21




Reliability Evaluation

. Normal C— Serial mr‘Disa\ble— Normal w/o FT
,_\—lﬁ_la.\.l.n.m.'s o FVie |
2+ A layer of 64x64
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90 | ]

. X2 80 L o

Q

3| In summary:
5 5|* Normal router ratio at 50% defect rate: from +29.83% (worst
s 2| case)to 346.74% (best case).
g o . ..

 Disabled router ratio is less than 2%.
oL [ T T T T T [ T T T T T T T T T T T T
50 10.0 150 20.0 25.0 30.0 350 40.0 45.0 50.0 _

S TSV cluster defect rate (%)
38 (f) 64x64 (4096 routers, 16384 TSV clusters)
xS 20 ®g8 20

18 18

50 10.0 15.0 20.0 25.0 30.0 350 40.0 45.0 50.0 50 10.0 15.0 20.0 250 30.0 350 40.0 45.0 50.0
TSV cluster defect rate (%) TSV cluster defect rate (%)
(e) 32x32 (1024 routers, 4096 TSV clusters) (f) 64x64 (4096 routers, 16384 TSV clusters)
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Performance Evaluation
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In the synthetic benchmarks, the impact is still high, however, the
system still be able to work under very high defect rate.
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Comparison

Model [Jiang2013]
Technology 65 nm
#TSV 1000
Configuration 4:2 8:2 4x4:8 | 8x8:16 | 16 x 16:32
#Spare TSV 512 256 512 256 128
45nm Arbiter Area (1m?) 372 ¢ 744 ¢ 1,116 ¢ 1,116 ¢ 1,116 ©
Average Area/TSV (um?) | 151.572 | 126.244 | 152.316 126.716 128.03
Reliability 100% 99% 100% 100% 100%
Fault Assumption (67sv = 0.01%, a = 2)*4
Model [Zhao2011] This work

' Technology N/A 45 nm
#TSV 6000 8448
Configuration 4:4 8:4 20:5 11 x4 x 4:0
#Spare TSV 6000 3000 1500 0
45nm Arbiter Area (um?) | 11,160 7] 11,1607 | 12,555 434,7843
Average Area/TSV (um?) | 113.916 151.86 127.09 151.47
Reliability 100% 98.11% 100%
- . ] 1 ]

22D

defect rate.

41 | Working router rate is extremely high: 98.11% even with 50% of




Hardware Design

Area Power Speed
Model (upm?) (mW) (Mhz)
Static Dynamic Total
Baseline router 18,873 5.1229 0.9429 6.0658 925.28
Router 29,780 10.017 2.2574 12.3144 | 613.50
Serialization 3,318 0.9877 0.2807 1.2684 -
Proposal .
TSV Sharing 5,740 0.7863 0.2892 1.0300 -
Total 38,838 11.7910 2.8273 14.6128 | 537.63

-
'——- --~

- ~*Single layer layout illustrating the TSV
sharing areas (red boxes). The layout size
is 865um x 865um.

T —

. \
Parea T »The sharing TSV area are the red boxes.
{ 7@ [ Tow Each sharing area has 8 clusters for 4
ports and 2 routers.

Khanh N. Dang, Akram Ben Ahmed, Xuan-Tu Tran, Yuichi Okuyama, Abderazek Ben Abdallah, >A Comprehensive Reliability Assessment of Fault-Resilient
Network-on-Chip Using Analytical Model”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 25, Issue: 11, pp. 3099 — 3112,
Nov. 2017. DOI:10.1109/TVLSI.2017.2736004
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Conclusion

* This paper presented an adaptive and scalable sharing
methodology for TSVs in 3D-NoC systems to deal with the
TSV-cluster defects.

* The system shows the high reliability that:
* reach up to 346.74% increase in fully functional routers,
* less than 2% of router having disabled vertical connection.

* The proposed approach can correctly work with a
reasonable degradation in terms of performance even at a
30% of fault-rate.

* Since no TSV redundancy is required, the proposal
provides a highly reliability while maintaining an
reasonable overhead.
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TSV Random Defect Recovery
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