The 18th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering December 21-23, 2017, Monastir, Tunisia

A Low-overhead Fault tolerant Technique for TSV-based Interconnects in 3D-IC Systems

Abderazek Ben Abdallah, Khanh N. Dang, and Yuichi Okuyama

Adaptive Systems Labratory

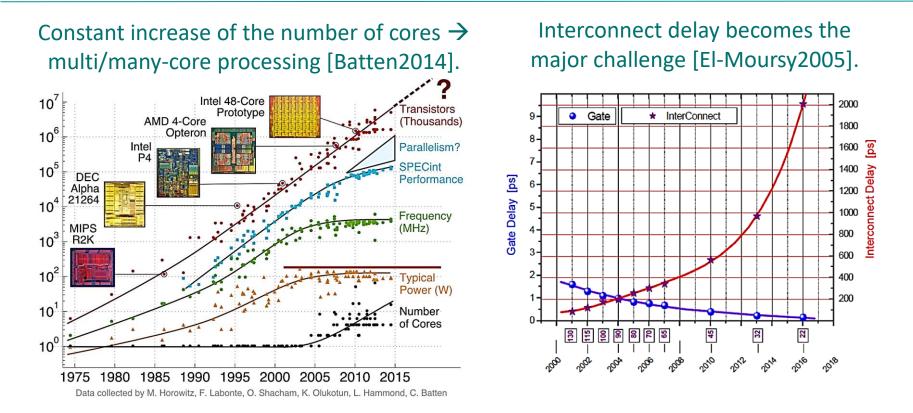
Graduate School of Computer Science and Engineering

The University of Aizu, Aizu-Wakamatsu 965-8580, Japan

Email: <u>benab@u-aizu.ac.jp</u>

Website: http://adaptive.u-aizu.ac.jp

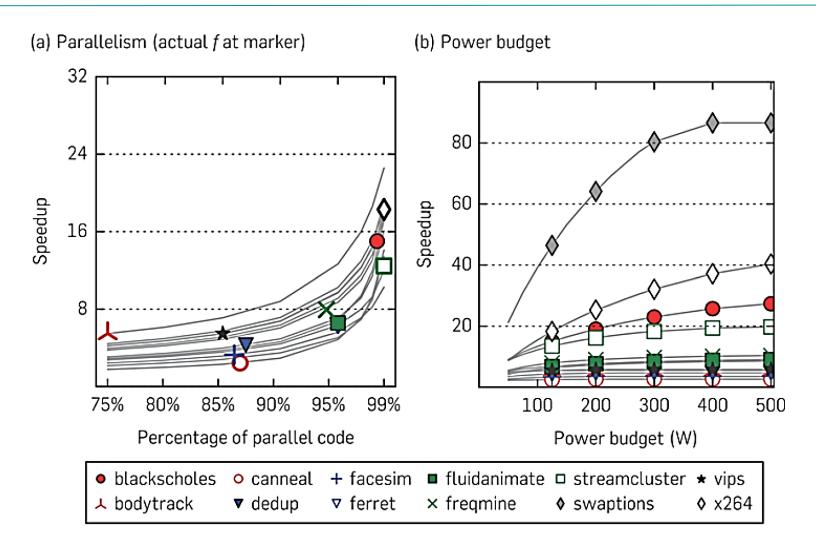
Outlines


- Era of Multicore Computing & 3D-IC
 - Integration
- TSV-cluster Defects Recovery in Highly Reliable 3D-NoC
- Design Evaluation and Analysis
- Concluding Remarks

Outlines

• Era of Multicore Computing & 3D-IC Integration

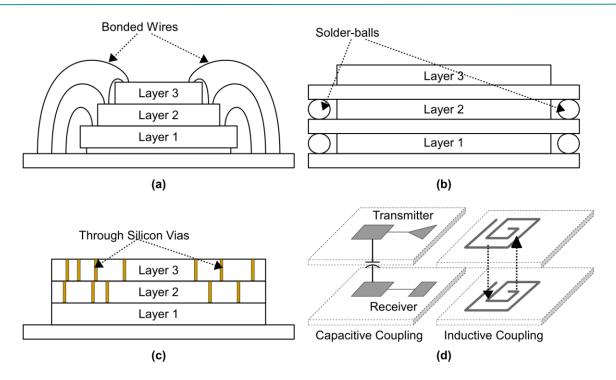
- TSV-cluster Defects Recovery in Highly Reliable 3D-NoC
- Design Evaluation and Analysis
- Concluding Remarks


Era of Multi/Many-core processing

To keep up with demands on computational power, we need to:

- Increase parallelism.
- Provide an efficient and low-power interconnect infrastructure to achieve better scalability, bandwidth, and reliability.

Design Challenges of Manycore systems

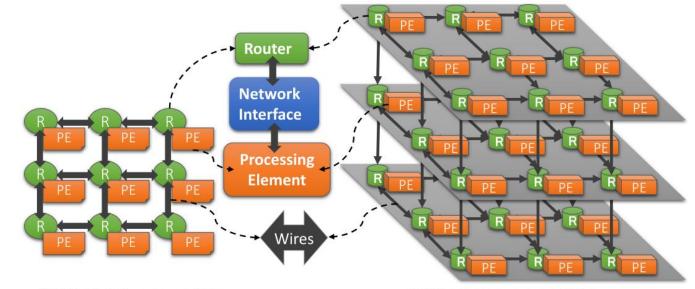

Challenge on parallelism and power budget on application speedup at 8nm [Esmaeilzadeh2013].

Emerging Interconnect Paradigms

- **RF/Wireless**: Replacing on-chip wires by integrated on-chip antennas to communicate with electromagnetic waves, in free space or guided medium.
- **Carbone Nanotube**: Using of carbon-based interconnect to replace the Cu/low-k technology.
- **Photonic**: Using photon instead of electron to transfer data.
- Network-on-Chips: Electronic networks were designed on a chip to allow parallel data transmission.
- **3D Integration**: Stacking multiple layers to obtain smaller footprints and shorter intra-layers interconnects.

Achraf Ben Ahmed, Tsutomu Yoshinaga, Abderazek Ben Abdallah, "<u>Scalable Photonic Networks-on-Chip Architecture Based on a Novel</u> <u>Wavelength-Shifting Mechanism</u>", *IEEE Transactions on Emerging Topics in Computing*, 2017 (in press). DOI: <u>10.1109/TETC.2017.2737016</u>

3D Integration Technology



3D Integration technologies: (a) Wire bonding; (b) Solder balls; (c) Through Silicon Vias (TSVs); (d) Wireless stacking.

	Kogge-S	Log shifter 16		Log shifter 32		
# of input bits	16-bits			32-bi		bits
	Delay	Power	Delay	Power	Delay	Power
2 planes	-20.23%	-8%	-13.4%	-6.5%	-28.4%	-8%
3 planes	-23.60%	-15%	-	-	-	-
4 planes	-32.70%	-22%	-	-	-	-

3D vs 2D Integration: Power consumption and Performance [Vaidyanathan2007].

Network-on-Chip

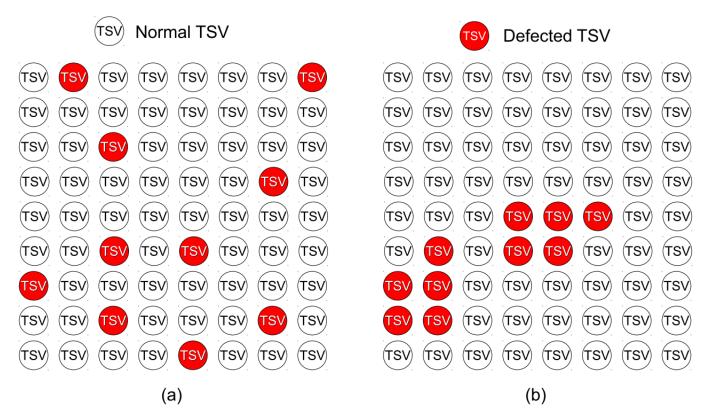
2D Mesh Network-on-Chip

3D Mesh Network-on-Chip

- Processing Elements are attached to routers via Network Interfaces.
- Network is established from a set of routers in a specific form and transaction protocols.
- Data transmissions between PEs are handled by routing inside the network.

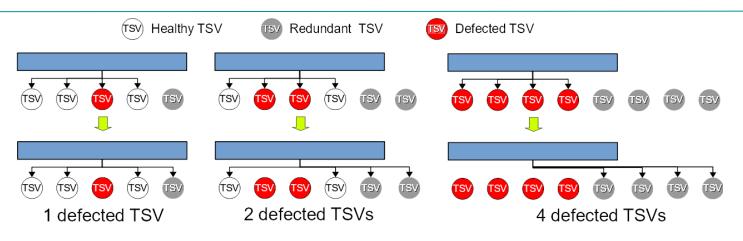
3D Network-on-Chip (3D-NoC)

- Among the existing interconnect infrastructure (e.g. Bus, Point-to-Point), Network-on-Chip offers high parallelism, scalability, and high resource usability.
- 3D-IC integration is considered as the future of ICs and can improve the performance, reduce the footprint, decrease the power consumption, and allows multiple technologies integration.
- 3D-NoC inherits the benefits of both 2D and 3D-IC technologies.
- However, due to the vulnerability of deep sub-micron devices and the high defect rate of TSVs, 3D-NoCs are predicted to encounter the reliability challenge.


TSV Reliability Issue

- The defect rate of TSVs is considerably high which negatively impacts the overall yield.
- In addition, due to the nature difficulties on thermal removal and the stress issue, 3D-ICs may be corrupted during operation.

Work	TSV Pitch	Defect Rate	Number of TSV	Yield w/o Spare
IBM'05	0.4µm	1.39×10^{-6}	1K-10K	95%-98%
IMEC'06	10µm	40.0×10^{-6}	10K	67%
HRI'07	-	9.75×10^{-6}	100K	68%
HRI'09	-	7.95×10^{-6}	100K	≥90%
SAMSUNG'09	-	0.63%	300	15%


Several implementation TSV with the defect rate and the impact on yield rate [Jiang2013].

TSV Defect Distributions

Two major TSV defect distribution: (a) Random defect; (b) Cluster defect [Zhao2011, Jiang2013].

TSV Fault Recovery with Redundancy

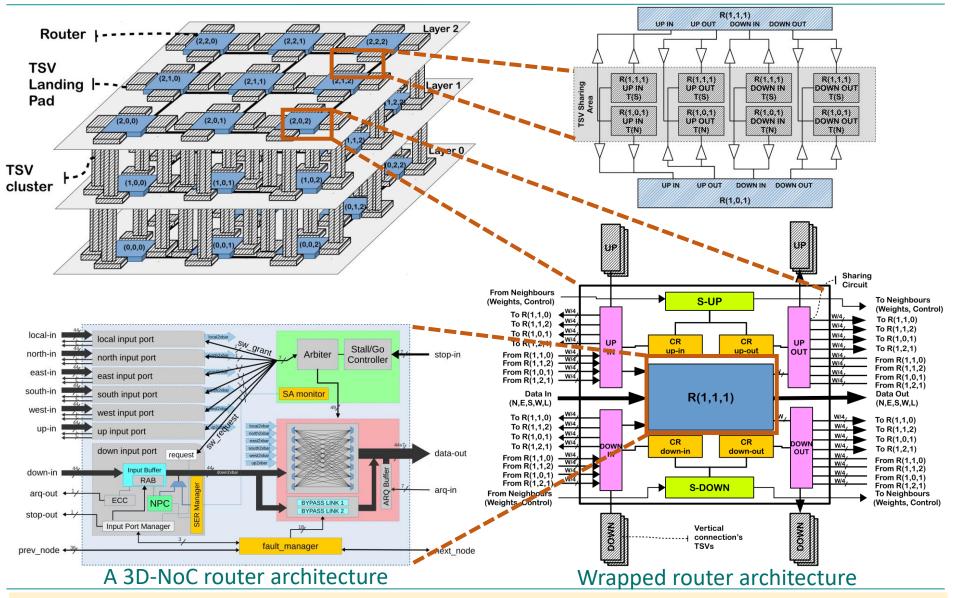
Using redundancy to recover the TSV defect.

- Using redundancies with any configuration encounter major problems:
 - ✓ The number of redundancies has to be larger than defected TSV. Because it cannot be changed after fabrication, designers need to carefully investigate the defect rate [Zhao2011, Jiang2013].
 - ✓ With the cluster defect, defect groups demand a lot of redundancies while the other may not need any redundancy.
- On the other hand, 3D-NoCs is observed to not always fully utilize its vertical links (TSV-based connections) [Hwang2011].

This Work Contribution

- This paper presents a highly scalable and low-overhead TSV management supported by an adaptive TSV recovery algorithm for 3D-NoC systems.
- We aim to maintain a graceful performance for 3DNoCs without the need for redundant links or employing routing algorithms
- This is different from existing techniques which rely on correcting the TSV defects by using redundancy or employing routing algorithms → costly area and power consumption penalties.

Outlines


• Era of Multicore Computing & 3D-IC Integration

• TSV-cluster Defects Recovery in Highly Reliable 3D-NoC

Design Evaluation and Analysis

Concluding Remarks

TSV-cluster Defects Recovery Mechanism

Khanh N. Dang, Akram Ben Ahmed, Yuichi Okuyama, and Abderazek Ben Abdallah, "Scalable Design Methodology and Online Algorithm for TSV-cluster Defects Recovery in Highly Reliable 3D-NoC Systems", IEEE Transactions on Emerging Topics in Computing, 2017 (in press). DOI: 10.1109/TETC.2017.2762407

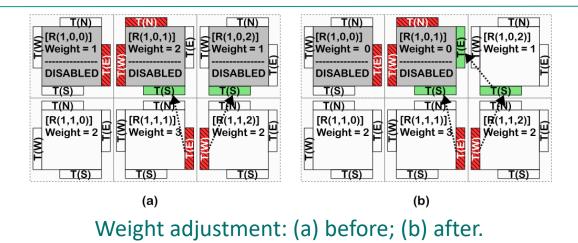
TSV-cluster Defects Recovery Mechanism

- Instead of grouping TSVs of a router in a same region, we divide them in four clusters.
- Inside a layer, a router has ability to access its own 4 clusters, and its 4 neighboring clusters (North, East, South, West).
 - The accessibility is controlled by arbiter using tristate gates.
 - Router having defected clusters tries to borrow neighboring clusters.
- Every router has a weight:
 - Higher weight router can borrow lower weight router.
 - Weight values are decided based on traffic or importance of the vertical connection.
- There is no redundant TSV \rightarrow reduce the area cost.
- An extended version of this work can be found in [Dang2017].

TSV Sharing Algorithm

Algorithm 1: TSV Sharing Algorithm.

/	<pre>/ Weight values of the current router and its N neighbors nput: Weight_{current}, Weight_{neighbor}[1:N] / Status of current and neighboring TSV-clusters nput: TSV_Status_{current}[1:N], TSV_Status_{neighbor}[1:N]</pre>	Inputs of the algorithm are the weight of routers and the status of TSV cluster
/ 0 / 0	<pre>/ Request to link TSV-clusters to neighbors utput: RQ_link[1:N] / Current router status utput: Router_Status oreach TSV_Status_{current}[i] do</pre>	Output of the algorithm are the request signal and the status of router
2 3	if $TSV_Status_{current}[i] == "NORMAL"$ then // It is a healthy TSV-cluster $RQ_link[i] = "NULL"$	If all TSV clusters is healthy, do nothing
5 6 7 8 9 10 11 12 13 14 15 16 17 el	$ \begin{array}{ c c c c } // & \mbox{It is a faulty or borrowed TSV-cluster} \\ find c in 1:N with: \\ & Weight_{neighbor}[c] < Weight_{current} \\ & Weight_{neighbor}[c] is minimal \\ & \mbox{and } TSV_Status_{neighbor}[c] == "NORMAL"; \\ & \mbox{if } (c==NULL) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	If there is defected/borrowed cluster, find the healthy candidate with the lowest weight. If there is an candidate, send the request. Otherwise, the vertical connection is disabled.


Example of TSV sharing

Borrowing [R(1,3,3)] [R(1,0,0)] Disabled Normal TSV cluster T(N) Direction Weight = 1 Normal Weight = 1 Vertical Defected TSV cluster Cancelling Router Connection T(N) Borrowed TSV cluster Router The Borrowing Post TSV sharing process: Initial state: Chains of borrowing is A layer of 4×4 10 defected TSV cluster in 10 created. The system disables the different routers. routers having low weight. Without correction, these Only 5 routers have to routers have to disable their disable their vertical vertical connection. connection. (50% reduction) L N T(S) T(S) T(S) r(s) 1107 T(N)T(N) T(N) T(N) T(N) T(N)T(N) [R(1,3,1)] [R(1,3,2)] Weight = 2 🗒 🎽 Weight = 1 [R(1,3,2)] [R(1,3,0)] [R(1,3,1)] [R(1,3,2)] [R(1,3,3)] [R(1,3,0)] [R(1,3,0)] Weight = 1 Weight = 2 \square Weight = 1 😫 Weight = 2 🛛 Weight = 2Weight = 1 T(S) T(S) T(S) T(S) T(S) T(S) T(S) T(S)

Initial state

After the sharing algorithm

Optimizing the TSV Sharing: Weight adjustment

- Weight adjustment: reduce the weight of disabled routers to help lower weight router be able to borrow clusters.
- Serialization: because no redundancy is used, there some router having less than 4 clusters.
 - To maintain the connectivity, we use Serialization (2:1 or 4:1).
- Fault-tolerant routing: if a router has no available TSV cluster, the packet to the corresponding connection is rerouted by using a fault-tolerant routing algorithm.

Outlines

• Era of Multicore Computing & 3D-IC Integration

• TSV-cluster Defects Recovery in Highly Reliable 3D-NoC

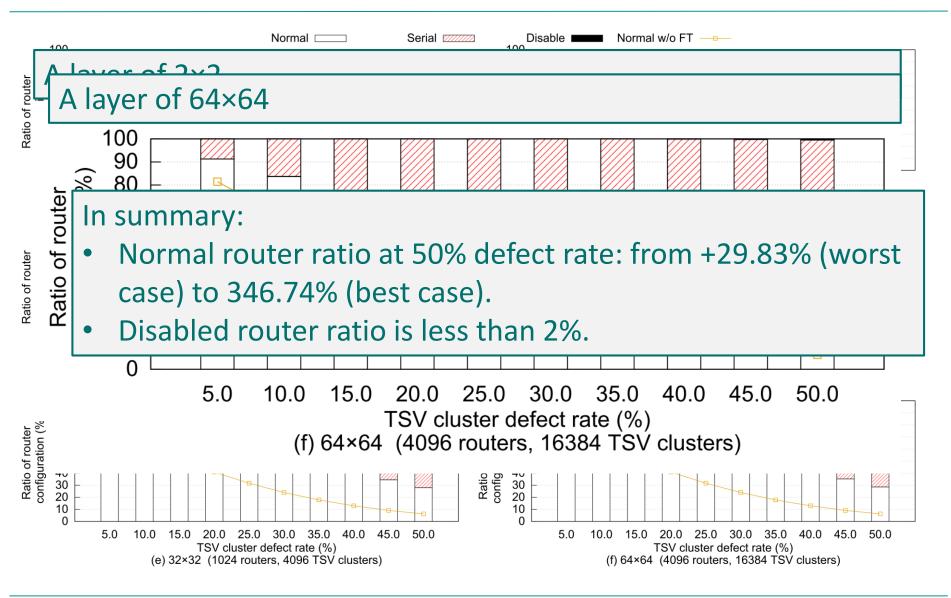
• Design Evaluation and Analysis

Concluding Remarks

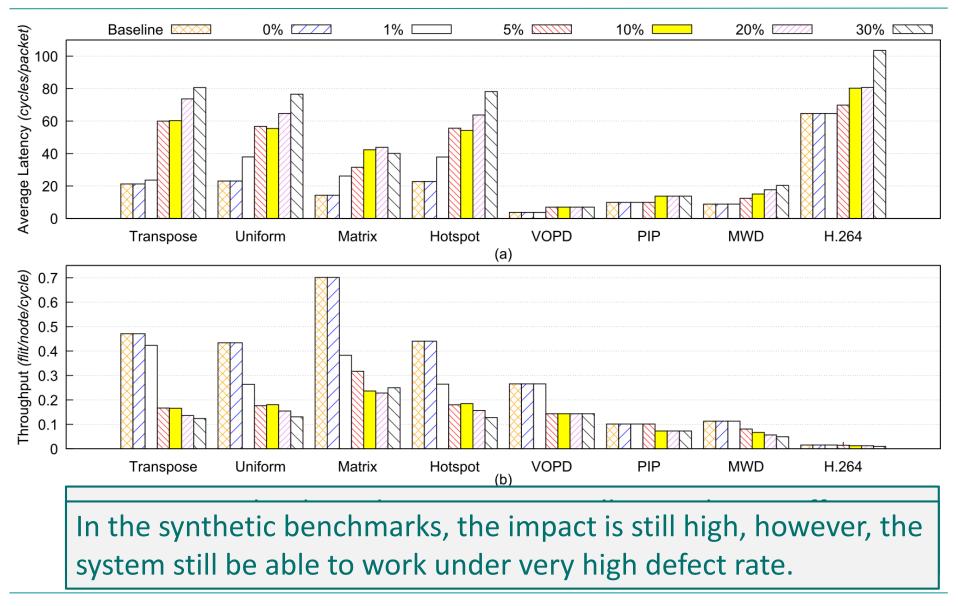
Evaluation Methodology

Platform:

- Verilog HDL
- Synopsys Design Compiler
- Cadence Innovus


Evaluation:

- Reliability
- Performance (latency, throughput

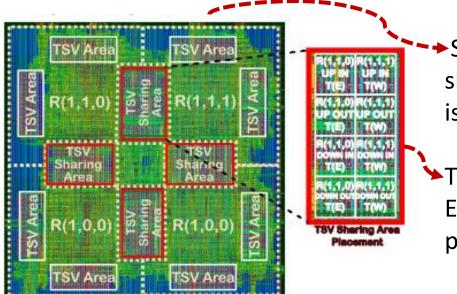

Parameter	Value		
# ports	7		
Topology	3D Mesh		
Routing Algorithm	Look-ahead routing		
Flow Control	Stall-Go		
Forwarding mechanism	Wormhole		
Input buffer	4		
Flit width	44		

Parameter	Value	Benchmark	Matrix	Transpose	Uniform	Hotspot
Faranieter	Value	Network Size (x,y,x)	(6, 6, 3)	(4, 4, 4)	(4, 4, 4)	(4, 4, 4)
Technology	Nangate 45 <i>nm</i>	#Packets	1,080	640	8,192	8,192
rechnology	FreePDK3D45	Packet's Size	10	10	10^a	10
Voltage	1.1 V	Benchmark	H.264	VOPD	MWD	PIP
TSV's size	$4.06\mu m \times 4.06\mu m$	#Tasks	11	4	8	4
TSV pitch	, ,	Network Size (x,y,x)	(3, 3, 3)	(3,2,2)	(2, 2, 3)	(2,2,2)
'	10 µm	#Packets	8,400	3,494	1,120	512
Keep-out Zone	15 µm	Packet's Size	10	10	10	10

Reliability Evaluation

Performance Evaluation

Comparison


22 C

Model	[Jiang2013]					
Technology	65 nm					
#TSV	1000					
Configuration	4:2 8:2 4 × 4 : 8 8 × 8 : 16 16				16 imes 16:32	
#Spare TSV	512	256	512	256	128	
45nm Arbiter Area (µm ²)	372 ²	744 ²	1,116 ²	1,116 ²	1,116 ²	
Average Area/TSV (μm^2)	151.572	126.244	152.316	126.716	128.03	
Reliability	100%	99%	100%	100%	100%	
Fault Assumption		$(\delta_{TSV} = 0.01\%, \alpha = 2)^4$				
Model	[Zhao2011] This work				nis work	
Technology	N/A			45 nm		
#TSV		6000		8448		
Configuration	4:4	8:4	20:5	11 imes 4 imes 4:0		
#Spare TSV	6000	3000	1500	0		
45nm Arbiter Area (µm ²)	11,160 ¹	11,160 ¹	12,555 ¹	434,784 ³		
Average Area/TSV (µm ²)	113.916	151.86	127.09	151.47		
Reliability		100%		98.11%	100%	

Working router rate is extremely high: 98.11% even with 50% of defect rate.

Hardware Design

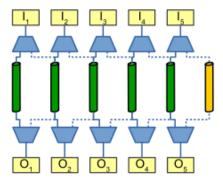
Model		Area		Speed		
		(μm^2)		(Mhz)		
			Static	Dynamic	Total	
Baseline router		18,873	5.1229	0.9429	6.0658	925.28
Proposal	Router	29,780	10.017	2.2574	12.3144	613.50
	Serialization	3,318	0.9877	0.2807	1.2684	-
	TSV Sharing	5,740	0.7863	0.2892	1.0300	-
	Total	38,838	11.7910	2.8273	14.6128	537.63

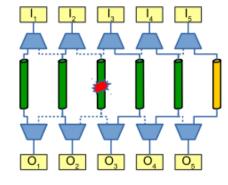
Single layer layout illustrating the TSV sharing areas (red boxes). The layout size is **865µm × 865µm**.

The sharing TSV area are the red boxes. Each sharing area has 8 clusters for 4 ports and 2 routers.

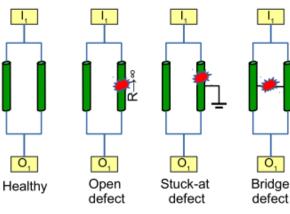
Khanh N. Dang, Akram Ben Ahmed, Xuan-Tu Tran, Yuichi Okuyama, Abderazek Ben Abdallah, "<u>A Comprehensive Reliability Assessment of Fault-Resilient</u> <u>Network-on-Chip Using Analytical Model</u>", *IEEE Transactions on Very Large Scale Integration (VLSI) Systems*, Vol. 25, Issue: 11, pp. 3099 – 3112, Nov. 2017. DOI:10.1109/TVLSI.2017.2736004

Outlines

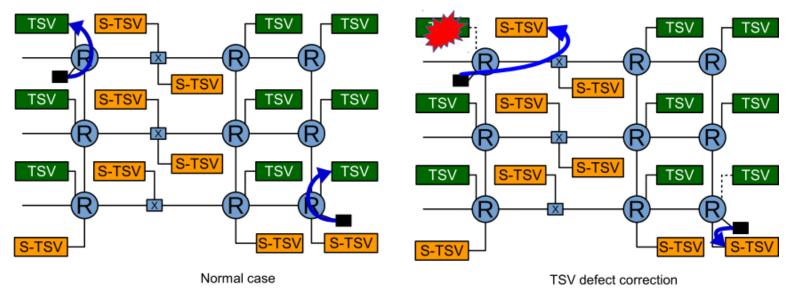

- Era of Multicore Computing & 3D-IC Integration
- TSV-cluster defects recovery in Highly Reliable 3D-NoC
- Design Evaluation and Analysis
- Concluding Remarks


Conclusion

- This paper presented an adaptive and scalable sharing methodology for TSVs in 3D-NoC systems to deal with the TSV-cluster defects.
- The system shows the high reliability that:
 - reach up to 346.74% increase in fully functional routers,
 - less than 2% of router having disabled vertical connection.
- The proposed approach can correctly work with a reasonable degradation in terms of performance even at a 30% of fault-rate.
- Since no TSV redundancy is required, the proposal provides a highly reliability while maintaining an reasonable overhead.


Backup Slides

TSV Random Defect Recovery



Redundancy and Shifting Technology

Double TSV

Network-TSV with redundancies