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Abstract—Convolution Neural Networks (CNNs) are responsi-
ble for the major discoveries in image classification and they are
considered as the core of most current computer vision systems.
In the implementation of deep CNN, Field-Programmable Gate
Arrays (FPGAs) offer a promising paradigm towards major
leaps in computational performance while achieving high-energy
efficiency. Although current CNN accelerations on FPGA have
demonstrated good performance, one major issue is that pre-
viously proposed implementation do not achieve a good balance
between latency, precision, and hardware complexity. In order to
overcome this problem, this paper proposes a highly optimized
FPGA implementation of a CNN, named NASH-CNN (Neuro-
inspired ArchitectureS in Hardware for CNN). An application
for handwritten digit recognition, based on MNIST dataset,
is evaluated. The experiment shows that our implementation
achieves better performance/accuracy/complexity balance when
compared to previously proposed schemes.

Index Terms—Convolutional Neural Networks; FPGA; Op-
timization; Hardware Acceleration; Performance-complexity
Trade-offs.

I. Introduction

Deep Neural Networks (DNNs) are now deployed for
many modern AI (Artificial Intelligence) applications includ-
ing computer vision [1], speech recognition [2], self-driving
cars [3], cancer detection [4], gaming [5], and robotics [6],
[7]. Software simulations of DNNs, such as Convolutional
Neural Networks (CNNs), face the problem of scalability
where biological computing systems are inherently parallel
in their architecture whereas conventional systems are based
on sequential processing architectures. Hardware implementa-
tions of DNNs have the advantage of computational speedup
over software simulations and can take full advantage of their
inherent parallelism. In particular, hardware implementations
can respond to the demands of real-time and fault-tolerant
applications.

In the hardware implementation of CNNs, Field-
Programmable Gate Arrays (FPGAs) have often been
considered as an efficient platform for prototyping and
performance exploration [8]. The FPGA implementation
exploits the inherent parallelism of CNNs and takes full
advantage of its multiple multiply-accumulate units. In
addition, FPGAs also have other benefits such as short
development cycle [9], flexibility, and reconfigurability.

There have been some implemented FPGA-based accel-
erators for DNNs. For instance, Zhou et al. [10] proposed
an accelerator for image recognition based on CNNs. They
implemented a five-layers architecture for MNIST [11] hand-
written digit recognition with 11-bits fixed-point precision on
a Virtex7 FPGA. As a result, the FPGA-based CNN has a
speedup of 16.42× compared to the same architecture when
implemented on Matlab/CPU software platform. However, a
drawback of this implementation was the low accuracy of
recognition. In another work, Ghaffari et al. [12] proposed
two architectures for the implementation of FPGA-based ac-
celerators. One of which (called Form1) was suitable for small
CNNs, while the other one (called Form2) was designed for
large ones.
These systems were evaluated using High-Level Synthesis
on a Xilinx Zynq FPGA. The evaluation of these systems
used LeNet [11] and MNIST dataset. However, their main
disadvantage is the high latency. In fact, Form1 and Form2
took 2 ms and 51 ms to process a single image, respectively.
Another FPGA design, named PCANet, was also implemented
by Zhou et al. [13]. PCANet is composed of the following
components: patch-mean removal, PCA filter convolutions,
binary quantization and mapping, block-wise histograms, and
an output classifier using linear Support Vector Machine
(SVM). When evaluated using MNIST dataset, the system took
7.588 µs to process a single sample and got an accuracy of
about 99.46%. However, the system implementation used a
significant amount of hardware resources.

In this paper, we propose a Neuro-inspired ArchitectureS
in Hardware for CNN (named NASH-CNN1) which is imple-
mented on an FPGA in order to provide an efficient balance be-
tween area cost, precision, and latency. This is the first stage of
our design of a scalable based hardware for SNNs. To evaluate
the proposed system, a CNN architecture for handwritten digit
recognition is implemented in both NASH-CNN and CPU.
Evaluation results show that the proposed system implementa-
tion provides better performance/complexity/accuracy balance
when compared to other previous works.

The rest of the paper is organized as follows: Section 2

1NASH Project is partially supported by the University of Aizu Competitive
Research Funding, CRF-2017, Fukushima, Japan
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Fig. 1. NASH-CNN system architecture.

describes the CNN architecture used for the proposed hard-
ware implementation. Section 3 covers the implementation of
NASH-CNN. Section 4 presents the evaluation methodology
and results. Section 5 shows deep discussion and further
research towards the design of a scalable neuro-inspired archi-
tecture in hardware. Finally, Section 6 presents our concluding
remarks.

II. NASH-CNN Architecture

Figure 1 (a) shows the top-level architecture of NASH-
CNN. It is composed of neural Processing units and a Global
Buffer. The point-to-point connections are used to connect
the different elements of the system. There are three kinds
of processing elements in NASH-CNN: ConvPU1 and Con-
vPU2 are designed to perform both convolutional and pooling
calculations; OPU computes the calculation of a neuron in the
output layer.

1) Global Buffer: The Global buffer is dedicated to buffer-
ing the input samples and the results. This buffer can commu-
nicate with DRAM through the asynchronous interface and
with ConvPU1s, as is shown in Fig. 1 (a). The size of the
buffer depends on the size of input example and its result.
The buffer is designed so that ConvPU1s can access a part of
an input map (a sliding window) in each clock cycle. As a
result, there is no need for an input buffer in ConvPU1s.

2) ConvPU1: Fig. 1 (b) shows the architecture of a Con-
vPU1. There is only one F × F filter in each processing unit.

The values of the filters are pre-calculated by software and
then statically configured into ConvPU1s. A buffer, called
pbuffer, is dedicated to store the convolutional output map
for pooling calculation.

The ConvPU1 performs both convolutional and pooling
calculations. This means that the calculations of both con-
volution and pooling layers are computed in this unit. At
each clock cycle, the dot-product between the input plane
and the kernel is calculated in parallel; then, the result is
also accumulated in parallel. The multiply-accumulate result
is then fed to the activation function unit to perform the
activation function calculation. Pbuffer stores the convolutional
output map. Finally, pooling function performs the pooling
calculation over the convolutional output plane. Therefore, an
output matrix is generated and sent to the next computation
units.

3) ConvPU2: The ConvPU2 is composed of various com-
ponents, as illustrated in Fig. 1 (d). A buffer, called ibuffer,
is dedicated to contain output maps from the previous pro-
cessing units. There are K mask filters which are pre-
calculated and statically implemented in this module. Further-
more, K multiply-accumulate calculation units (from MAC0 to
MACK−1) are implemented to perform convolutions in parallel.
Similarly to ConvPU1, ConvPU2 also contains activation
function, pbuffer, and pooling are also designed.

In addition, the sizes of the pbuffer in ConvPU1 and



ConvPU2 are calculated by using the following equations:

Wp =
Wi − F + 2P

S
+ 1 (1)

Hp =
Hi − F + 2P

S
+ 1 (2)

where Wp and Wi are the widths of pbuffer and ibuffer,
respectively, Hp and Hi are the heights of pbuffer and ibuffer
respectively, F is the filter size, P is the number of zero-
paddings used in the CNN architecture, and S is the stride of
the filter over the input example.

4) OPU: Represented in Fig. 1 (c), OPU performs the
calculation between the input values and connection weights
as a conventional neuron. Output maps of previous units are
buffered in ibuffer. Like the other computation units, weights
are also pre-computed and statically implemented. In addition,
the multiply-accumulate units are designed to perform the
calculation in parallel. Therefore, OPU takes one clock cycle
to yield the output value.

III. Application for Handwritten Digit Recognition

A. Network Architecture

To evaluate the performance of NASH-CNN, a CNN archi-
tecture for handwritten digit recognition is built and run on
both NASH-CNN and a general purpose CPU. The network
architecture is similar to the one described in [14]. MNIST
dataset is used for training and testing. The network includes
five separate layers, as shown in Fig. 2. The parameters of the
CNN architecture are summarized in Table I.

TABLE I
Parameters of the network architecture.

Layer Kernels/Weights Layer size
Input - [28 × 28] × 1

Conv1 [5 × 5] × 6 [24 × 24] × 6
Pool1 [2 × 2] × 6 [12 × 12] × 6
Conv2 [5 × 5] × 6 × 12 [8 × 8] × 12
Pool2 [2 × 2] × 12 [4 × 4] × 12

Hidden - [192 × 1] × 1
Output [192 × 1] × 10 [1 × 1] × 10

B. NASH-CNN Implementation

1) Global buffer and Neural Processing Elements: The
CNN architecture described in Section III-A is implemented
onto an FPGA. The system implementation is composed of
a Global Buffer, six ConvPU1s, twelve ConvPU2s, and ten
OPUs. The number of neural Processing units corresponds to
the number of neurons required in the CNN architecture.

The accuracy of the calculations needs to be taken into con-
sideration in the system implementation. The whole system is
implemented using 16-bits fixed-point calculations instead of
floating-point ones because of limitation of FPGA resource. In
the case of multiply-accumulate units, the results are truncated
from 32 to 16-bits after accumulation instead of multiplication.
This is a guarantee for maintaining the calculation precision.

On the other hand, the rounding-to-nearest-integer method is
applied to reduce the error.

As previously explained, the proposed implementation con-
tains the following components:
• Global buffer: this unit is designed for storing the input

map and its result. In this implementation, the buffer has
two sizes of 28×28×16-bits and 10×16-bits for the input
and output example, respectively. During the execution of
ConvPU1, a sliding window of 5 × 5 in size is accessed
at a single clock cycle.

• Neural Processing elements: parameters of the neural
processing units presented in Section II are configured in
order to be suitable for the adopted application. These
computation units use the sigmoid function as an activa-
tion function and mean-pooling. In ConvPU1, there is a
filter with the size of 5 × 5 (F is equal to 5). Besides,
the pbuffer has a 24 × 24 × 16-bits capacity to store the
convolutional results. Each ConvPU2 has a 12× 12× 16-
bits input buffer, six 5 × 5 filters (K is equal to 6) and
an 8 × 8 × 16-bits pbuffer. There is also an input buffer
with 192 × 16-bits size in each OPU unit. This is also
corresponding to the pre-configured 192 weights (N =

192).
2) Activation Function: In this implementation, the sigmoid

function (equation 3) is used as an activation function of the
neurons in convolutional and output layers. Because this is
a nonlinear function, special attention must be paid when
implementing it on FPGA.

y =
1

1 + e−x (3)

There are some methods to implement the sigmoid function
such as piecewise linear (PWL) approximations, piecewise
second-order approximations, and combinational approxima-
tions [15]. An efficient implementation can be measured by
three factors: accuracy, speed, and area cost. In this paper, a
non-linear approximation [16] is employed to implement the
sigmoid function. In order to improve the accuracy, the interval
range of variables from -∞ to +∞ is divided into twenty-
five piece-wise intervals corresponding to their functions, as
is illustrated in Table II.

Compared to the work in [16], some coefficients of the
piece-wise function in the implemented function, named
TqSigmoid, are re-calculated in order to reduce the approx-
imation error. In the interval range of [-2,-1], the approximate
function is re-calculated by Matlab. Fig. 3 shows the evaluation
results of the re-calculated sigmoid function and its absolute
error. As is shown in Fig. 3 (c), the absolute error of TqSigmoid
is sharply reduced after re-calculation. Furthermore, the mean
squared error of the TqSigmoid is equal to 1.09 × 10−6.

3) Learning Algorithm: There are two learning techniques
often employed to implement a CNN on FPGAs. In the
on-chip learning, where weights are directly calculated and
determined in hardware; thus, it does not require any other
computation platforms during the CNN training. As a result,
the implemented system can adapt to different applications.
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Fig. 2. Network architecture for MNIST evaluation.

Fig. 3. Evaluation results of the approximate sigmoid function: (a) TqSigmoid and the sigmoid function (b) absolute error of TqSigmoid (c) absolute error of
NLASigmoid [16] and TqSigmoid in the piece-wise interval of [-2:-1].

TABLE II
The interval and functions for the sigmoid function approximation.

Interval Function Form
(1,1) y = 0.2383x + 0.5000

[-2,-1] y = 0.0467x2 + 0.2896x + 0.5118
[-3,-2) y = 0.0298x2 + 0.2202x + 0.4400
[-4,-3) y = 0.0135x2 + 0.1239x + 0.2969
[-5,-4) y = 0.0054x2 + 0.0597x + 0.1703

[-5.03,-5) y = 0.0066
[-5.2,-5.03) y = 0.0060
[-5.41,-5.2) y = 0.0050

[-5.66,-5.41) y = 0.0400
[-6,-5.66) y = 0.0030
[-6.53,-6) y = 0.0020

[-7.6,-6.53) y = 0.0010
[-∞,-7.6) y = 0

[1,2) y = −0.0467x2 + 0.2896x + 0.4882
[2,3) y = −0.0298x2 + 0.2202x + 0.5600
[3,4) y = −0.0135x2 + 0.1239x + 0.7030
[4,5) y = −0.0054x2 + 0.0597x + 0.8297

[5,5.0218) y = 0.9930
[5.0218,5.1890) y = 0.9940
[5.1890,5.3890) y = 0.9950
[5.3890, 5.6380) y = 0.9960
[5.6380,5.9700) y = 0.9970
[5.9700,6.4700) y = 0.9980
[6.4700,7.5500) y = 0.9990
[7.5500, +∞) y = 1

On the other hand, weights in the case of off-chip learning
are commonly pre-calculated by software. These weights are
then statically configured into the FPGA. This method takes
full advantage of the software calculation precision.

In the case of NASH-CNN, we use off-chip learning because
of the following reasons. First, this method has lower area
cost compared to the on-chip learning. This is due to the
large amount of hardware resource required to perform the
on-chip training process. For example, DSPs are used for
operators, and registers for stored values as well as some
parameters. Second, in this work, we focus on the balance
between hardware complexity, accuracy, and latency in the
feed-forward computation. Therefore, the implementation of
on-chip learning is out of the scope of this work. Fig. 4
depicts how to implement the learning rule in NASH-CNN
(see section IV-A for more details).

IV. Evaluation

A. Evaluation Methodology

In order to evaluate the performance of the proposed NASH-
CNN, the CNN architecture for handwritten digit recognition
is implemented in both software and FPGA. First, the network
is implemented using Matlab tool running on a PC with a
3.40 GHz Intel Core-i7 4770 and 16 GB of RAM. This
implementation not only aims to determine the kernels and



TABLE III
Area cost comparison.

Parameters/Systems PCANet2015 [13] Form12016 [12] Form22016 [12] Yongmei2015 [10] Proposed NASH-CNN
Target device Virtex-7 980T Xilinx Zynq Xilinx Zynq Virtex-7 vx485tffg1761-2 Virtex-7 v2000tflg1925-1

FFs/Registers (F/R) 358848-R 54075-F 35399-F 66364-F 18299-F
LUT 265460 14832 39879 51125 65386

BRAM 64 (36E1) 27 3 0 0
DSP 3599 (48E1) 20 (48E) 90 (48E) 638 (48E) 1095 (48E1)

Precision - 25-bits fixed-point 25-bits fixed-point 11-bits fixed-point 16-bits fixed-point

Computer
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Fig. 4. Explanation of the learning algorithm implementation.

weights for off-chip learning mechanism; but, also to compare
the latency between the PC and NASH-CNN platforms. The
MNIST dataset is used as the training dataset containing
60,000 examples and a test set of 10,000 examples. The
network is trained by 100 epochs with the batch size of 50.
The PC takes an execution time of 6025.31 s for the training
task.

Second, the network architecture is designed in Verilog-
HDL and synthesized with Vivado 2017.1 tool. The target
device for NASH-CNN is Virtex-7 v2000tflg1925-1. As previ-
ously mentioned, the system is implemented by using 16-bits
fixed-point calculations and the network is trained by using
off-chip learning method. This means that the weights are
trained in software at a previous stage, then they are statically
configured into FPGA.

TABLE IV
NASH-CNN power estimation.

Power consumption Power (mW)
Dynamic 382

Static 641
Total 1,023

B. Complexity Evaluation

1) Area cost: Table III shows the comparison results be-
tween the proposed system and other implementations in
terms of area cost. These architectures were also evaluated
by using the MNIST dataset. In overall, PCANet2015 [13]
used the largest amount of hardware resource in terms of
all parameters when compared to the other implementations.
NASH-CNN requires the smallest number of flipflops while
using more LUTs and DSPs when compared to Form12016
[12], Form22016 [12], and Yongmei2015 [10].

2) Power consumption: Table IV shows the power esti-
mation of NASH-CNN system. We use Xilinx Vivado tool
perform the power estimation. The total power consumption
of the system is 1,023 mW, in which the dynamic part occupies
over one-third of the total power.

C. Performance Evaluation

1) Latency: Fig. 5 compares the implemented systems in
terms of latency. PCANet2015 is the fastest system when
compared to the others. It takes only 7.58us to calculate a
single example. Whereas, Form12016 and Form22016 show
higher latency, reaching 2, 000 µs and 51, 000 µs to process
the same single example, respectively. Using the same CNN
architecture, the latency in [10] is lower when compared to
NASH-CNN, reaching up to 25.43 µs. The proposed FPGA
classifier was compared to the PC Matlab implementation.
The software implementation spends an execution time of
492 µs for an input example while the proposed NASH-CNN
requires only 32.04 µs. This means that our FPGA based
implementation achieves up to a 15.35× speedup over the
software one.

2) Accuracy: As shown in Fig. 6, PCANet2015 achieves
the highest accuracy amongst the compared implementations.
This is thanks to its network architecture which is different
than the others. Both Yongmei2015 and NASH-CNN use the
same CNN architecture. Nevertheless, NASH-CNN provides
higher accuracy.

V. Discussion

To current proposed architectural optimization is suitable
for CNNs with two convolution-pooling layers and one fully-
connected layer. As shown in Figure 1, the system has three
separate layers, in which computation units are connected
via point-to-point. Therefore, it is easy to mapping CNNs
which have the same number of layers compared to the
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proposed system. Besides, the system can only be expanded
by increasing the number of neurons in each layer.

On the other hand, the system can be also configured in
order to implement multiple-layer CNNs. Since the hardware
resource of FPGAs is limited, area cost needs to be taken
into consideration when implementing. Adding more layers of
computation units leads to consuming a large the amount of
hardware resource. Hence, the current three-layers architecture
will be kept during implementation. In that case, computation
units are configured and considered as a computation frame.
CNNs are then split into every single three-layers frame before
mapping into the system. For example, a six-layers CNN can
be divided into two three-layers parts. In the first stage of
computation, the input map and filters are loaded from the
global buffer. After calculated, the output map will be sent
back to the buffer for the next calculation. By applying this
technique, though there is an increase in execution time of
the system, it does not consume more hardware resource of
FPGAs.

As a future work, we plan to investigate a scalable spik-

ing neuro-inspired architecture in hardware. The architecture
will be based on our earlier proposed 3D network-on-chip
(NoC) [17]–[19] and supports Random-Access-Buffer (RAB),
Bypass-Link-on-Demand [20], [21] techniques. The idea is
based on stacking planar dies on top of one another and
connecting them with Through-Silicon Vias (TSVs). This ar-
chitecture aims demonstrate that the problem of limited scaling
of interconnect in reconfigurable hardware can be alleviated
through the use of a 3D-NoC. As a result, the communication
latency would be enormously reduced. The NoC [17]–[19]
paradigm is particularly attractive for spiking neural networks
as it offers scalability, parallelism, and flexibility. In a NoC
system, information is transmitted as packets, allowing the
nodes on the network to implement advanced features such
as prioritization and load balancing.

VI. Conclusion
In this paper, we presented an FPGA-based acceleration

and optimization for CNNs. A handwritten digit recognition
application is evaluated in both software and the proposed
NASH-CNN. 16-bits fixed-point calculations were used to im-
plement the system components. During the implementation,
the calculation precision was paid attention in order to reduce
the calculation error. Evaluation results show that NASH-
CNN achieved a speed-up of more than 15× when compared
to general-purpose CPU-based implementation. When com-
pared to previously proposed implementations, NASH-CNN
provides an efficient trade-off between area cost, accuracy,
and latency. Further more, the current architecture is our first
step towards the design of scalable spiking architecture in
hardware.
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