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Abstract

Artificial Neural Networks (ANNs) are exposing great abilities to address a huge va-
riety of problems in areas such as image processing, pattern recognition, and medical
diagnostics. ANNs are parallel and distributed systems for information processing. This
characteristic is suitable for implementing ANN systems in hardware architectures because
of the advantages of their inherent parallelism and their potential to meet the demands
of real-time applications. This brief survey compares the most common solutions which
are used to implement ANN systems. Furthermore, an overview of ANN systems is also
presented.

1 Neural Network Fundamental

1.1 Neural models

A coarse biological neuron, shown in Figure 1 (a) is considered to be an information pro-
cessing system. Dendrites play a role as input devices, where input signals are collected. The
neuron will process the signals and then produce output signals which are propagated along
its axon. Finally, the axon transmits the signals via synapses to dendrites of other neurons. It
is important to emphasize that this model of a biological neuron is very coarse, and there are
many different types of neurons, each of which has different properties.

(a) (b)

Figure 1: (a) a cartoon drawing of a biological neuron (b) a mathematical model of a neuron.

In the computational model of a neuron, shown in Figure 1 (b), each output signal (e.g. x0)
from a previous neuron is multiplied with a weight (e.g. w0). This weight presents the synaptic
strength at that synapse. Dendrites carry the signals (e.g. w0x0) to the cell body where they
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all get summed. In the basic model, if the final sum exceeds a certain threshold, the neuron
can fire, sending a spike along its axon. An activation function is modeled as the firing rate of
the neuron.

Neural networks can be classified into three generations according to their computation
units [18, 19]:

The first generation: networks based on neurons as computational units which are also
referred to as perceptrons or threshold gates. These networks only process with digital inputs
and outputs, boolean functions, and a single hidden layer. Multilayer perceptrons, Hopfield
networks, and Boltzmann machines are typical examples of this kind of neural network.

The second generation: each neuron in the network applies an activation function with
a continuous set of possible output values, such as sigmoid or polynomial or exponential func-
tions. Feedforward, recurrent sigmoidal neural networks, and radial basis function units are
considered typical examples of this generation. Moreover, these systems compute not only
arbitrary boolean functions but also functions with analog inputs and outputs. Furthermore,
neural networks in this generation support learning algorithms based on gradient descent.

The third generation: spiking neurons are employed as computational units in the net-
work. Spiking neural networks are considered to be a closer approach to modeling biological
neurons than previous ANNs. Biological neural systems use the timing of single action po-
tentials (or spikes) to encode information. SNNs use the timing of the spikes, the network
topology, and synaptic weights to process information.

1.2 Neural Network Architectures

There are many neural network architectures; they are regularly organized by their different
layers of neurons. These layers comprise of input, hidden, and output layers. Two metrics are
frequently used to measure the neural network size, the number of neurons and the number
of parameters. For example, there are ten neurons in the network showed in Figure 2 (not
counting neurons in the input layer), while the number of parameters is 46 (3x4 + 4x4 + 4x2
= 36 weights, 4+4+2 = 10 bias)

It is important to mention that the network size plays an integral part in designing a neural
network. Designers need to decide the number of layers in the network, and the number of
neurons in each layer. When the network size is increased, it means that capacity of the
network also is increased. This results in the network is ability to handle more complicated
functions. On the other hand, overfitting can occur when increasing the network size. However,
there are some good techniques to deal with this problem, such as L2 regularization, dropout,
and input noise.

1.2.1 Feed forward neural networks

Figure 2 depicts a feed forward neural network (FF or FFNN). This network is
organized from separate layers of neurons, they are input, hidden, and output layers. In this
architecture, there are many connections between neurons across layers, but not within a layer.
Information is fed from the front to the back. This network usually is used with the back-
propagation training method.

There are some other neural networks with the same topology as FFNNs. If neurons use a
simple binary function, this architecture is called Perceptron (B) or Multilayer perceptron
(MLP). The simplest network, with two input neurons and one output neuron, can be used
to model logic gates. Radial basis function (RBF) [4] networks are FFNNs with neurons
having radial basis functions. RBFs are suitable for pattern recognition and classification.
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Figure 2: A feed forward neural network.

1.2.2 Recurrent neural network architectures

As shown in Figure 3, Recurrent neural networks (RNNs) are pretty similar to FFNNs,
but the hidden layers are replaced by recurrent neural layers. Unlike FFNNs, Neurons in RNNs
are not only fed from the previous layer but also from the previous pass of themselves [8]. This
results in different outputs when changing the order of information in feeding.

Figure 3: A recurrent neural network.

RNNs can be used in many areas where the data form can be represented as a sequence such
as a string of text. Thus, RNNs are regularly used in autocompletion systems and machine
translation. A big drawback of RNNs is the vanishing/exploding problem when using gradient
descent technique.

Long short term memory (LSTM) [13] networks are proposed to deal with the problem
of RNNs which were mentioned above. Instead of using recurrent neurons, LSTM networks
employ memory neurons which are composed of a memory cell and three gates: input, output
and forget. One advantage of LSTMs is that the network can learn complex sequences or
compose primitive music. However, LSTMs require more resources to implement compared to
RNNs because each gate in LSTM neuron has a weight.

In order to tackle the drawback of LSTMs, Gated recurrent units (GRUs) [7] were
proposed. Each GRU neuron has only two gates: update and reset gates. GRUs are slightly
faster and easier to run compared to LSTMs.

Neural Turing machine (NTM) [10], as shown in Figure 4, is another proposal based
on LSTMs. Each NTM neuron does not comprise a memory cell. The network uses a content-
addressable memory bank which can be read and written. NTMs have been shown to be able
to read, write, and even change state based on what it read.

Other proposals are Bidirectional recurrent neural networks (BiRNN), bidirec-
tional long short term memory networks (BiLSTM) and bidirectional gated re-
current units (BiGRU). Unlike their counterparts, instead connecting to the past, they

3



Figure 4: A neural Turing machine network.

connect to the future. In [24], BiRNNs provided an efficient estimation of conditional posterior
probability of complete symbol sequences without making any explicit assumption about the
distribution shape.

1.2.3 Convolutional neural network architectures

Convolutional neural networks (CNNs or deep convolutional neural networks,
DCNNs) are very suitable for image processing [17]. They can also be used for other input
types such as audio. CNNs sequentially feed each part of training data to decrease the number
of nodes in the network. CNNs regularly use the back-propagation technique in training.

Figure 5: A convolution neural network.

A CNN network is regularly composed of a few different types of layers: convolutional layer,
pooling layer, and fully-connected layer. The convolutional layer is the core block of a CNN that
does most of the computations. This layer will compute a dot product between their weights
(kernels or filters) and a small region of input volume. The pooling layer, if it is added to the
CNN, will perform a downsampling operation in order to decrease the spatial dimensions. 2x2
max poolings are commonly used in image processing. The fully-connected layer will compute
and produce the outputs.

The are some other proposals based on CNNs. Deconvolutional Networks (DNs) [25],
as shown in Figure 6, were proposed to get a robust image representation for both the analysis
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Figure 6: Example of a deconvolutional neural network.

and synthesis of images. Deep convolutional inverse graphics network (DC-IGN) [16]
is built convolutional layers and de-convolution operators. This model was shown to be able to
generate new images of the same object with variation in pose an lighting when given a single
input image.

1.2.4 Autoencoder architectures

Autoencoders (AE) [3] were proposed to encode information in term of compression
automatically or reduce dimensions of the feature space in information processing applications.
Figure 7 (a) depicts a autoencoder, it is quite similar to a FFNN. However, there are two
characteristic which need to be mentioned. First, the number of neurons in middle layers are
less than other layers in the network. This is because the information is compressed in the
middle layers. Second, the AE architecture is symmetrical around the middle layers.

(a) (b)

Figure 7: Examples of (a) autoencoder (b) sparse autoencoder.

Sparse autoencoders (SAEs) [23] are contrary to AEs, as shown in Figure 7 (b). Com-
pared to AE architectures, SAE architectures are still symmetric, but the number of neurons
in the middle layers is larger than its counterparts. SAEs can be used to extract small features
from a dataset.

1.2.5 Hopfield network and Boltzmann machines

Hopfield networks(HNs) [14] are quite different compared to the systems mentioned
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above. In this architecture, each neuron is connected to others. Neurons play distinct roles
when the network is trained, they are input, hidden, and output corresponding to before,
during, and after training respectively. HNs offer a model for understanding human memory.
They are also used as content-addressable memories.

Figure 8: Example of a Hopfield neural network.

Boltzmann machines (BMs) [12] are pretty similar to HNs. However, BMs are composed
of some input neurons, while the others are hidden neurons. The input neurons will become
output neurons after each update of the full network.

2 Neural-Inspired Computing Systems

An ANN system is a parallel and distributed network of neurons which are interconnected
in a layered arrangement. This section provides brief summaries of implementing ANNs on
several hardware platforms.

2.1 ASIC Analog SNN/ANN systems

There are several good reasons why designers should implement ANNs into ASIC analog
chips. First, developers can build some common activation function units quickly. For example,
functions such as integration and sigmoid are implemented by using single transistors. Second,
ASIC analog chip can be automatically performed by physical processes such as summing of
currents or charges. Finally, analog chips offer area, speed, and power consumption benefits.

On the other hand, ASIC analog SNN/ANN systems face some challenges. The first one is
that analog technology is susceptible to noise. This limits computation precision and makes it
harder to understand what is computed exactly. The second one is how to represent adaptable
weights in analog circuits. Weights can be represented by resistors, but these are not adaptable
after the production of the chips. Besides, capacitors, floating gate transistors and charge cou-
pled devices can be used for weight representation, but they have limited storage times and lack
compatibility with standard VLSI processing technology. The final one is that implementation
of most learning rules into analog VLSI turns out to be very difficult.

2.2 ASIC Digital SNN/ANN systems

The majority of the ASIC chips are digital, and most of them use CMOS technology.
Digital techniques offer high computation precision, high reliability, and programmability. Fur-
thermore, there are powerful design tools which are available for fully and semi-digital system
designs.
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However, ASIC digital chips have some drawbacks. First, ASIC digital chips are lower
speed compared to their analog counterparts because it is difficult for designers to implement
the synapse multiplier. This element is normally the slowest in the network processing. Second,
the chips have may not directly interface with the real, analog word. Digital implementation
always requires fast analog-to-digital converters (ADCs) in the input port and digital-to-analog
converters (DACs) in the output port. This leads to an increase in the cost of implementation
and power consumption, as well as decreases throughput of systems.

2.3 FPGA SNN/ANN systems

FPGAs offer an effective programmable resource for implementing SNN/ANN systems.
They allow different designs to be evaluated in a very short time. Implementing neuron net-
works on FPGA has some other advantages such as: low cost, readily available, and flexibility.
Therefore, it is easier for designers to change their designs and also reduce the hardware de-
velopment cycle. On the other hand, one main drawback of this implementation method is
that it is harder to implement large models with thousands of neurons; however, FPGA speeds
approximately double each year. Thus, a large neural network may soon be implemented on a
single FPGA.

2.4 DSP SNN/ANN systems

Like microprocessors, Digital Signal Processors (DSP) are not suitable for ANN systems
because the main disadvantage with DSP implementation is sequential computation. However,
DSPs can be used as computational units when implementing ANN systems. In this case,
a DSP is designed as a specialized microprocessor that is optimized for the fast operational
needs of digital processing. For example, in [22], DSP cores built in a FPGA chip are used
for product implementations. As mentioned in Section 2.2, dot product implementations are
difficult tasks for designers. In this architecture, the DSP is designed to use a frequency twice
as large as a neuron block. As a result, a product operation can be done in one operation cycle
of the FPGA. In another work, a floating point DSP processor is used to implement a dynamic
synapse neural network in order to recognize acoustic sound in noisy environments.

Digital chip can be classified into three main categories: like bit-slide, single instruction
multiple data (SIMD), and systolic arrays. In the case of conventional bit-slice architectures, a
processor is built from modules. Each module processes one bit-field or ”slide” of an operand.
This architecture offers simple and cheap building blocks of single or several neurons to construct
larger size networks. This make chip designing become more flexible. Some examples of this
architecture are Philips’ Lneuro chip [20] and Neuralogix’ NLX-420 Neural Processor. Chips
based on this architecture often offer off chip learning. In the SIMD, Processing Elements
(PEs) concurrently run the same instruction with different data sets [21]. Adaptive Solutions’
N64000 [11] and SIMD architecture [15] are good examples for this architecture. In the case of
systolic array architectures, each PE processes one stage of a calculation. This architecture is
very suitable for implementing matrix multiplication that is common to ANNs. Some examples
are TORAN [2] and vector processor arrays [6].

2.5 Examples

The TrueNorth chip [1] is based on an efficient, scalable, and flexible non-von Neumann
architecture. It is built from 4096 neurosynaptic cores, containing an aggregate of 1 million
neurons and 256 million synapses. Chips can be tiled in two dimensions via an interchip
communication interface. TrueNorth can reach a peak computational performance of 58 giga-
synaptic operations per second (GSOPS) and an energy efficiency of 400 GSOPSW [5]. The
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architecture of the chip is suitable for many applications that use complex neural networks in
real time such as multiobject detection and classification.

Another remarkable architecture is SpiNNaker [9], a massively parallel multicore comput-
ing system. It can simulate the behavior of aggregates of up to a billion neurons in real time.
The full architecture is composed of 1,036,800 ARM9 cores and 7 Tbytes of RAM in 57K nodes.
The system consists of 1,200 boards where each of them contains 48 nodes. In operation, the
system consumes at most 90 kW of electrical power.

2.6 Conclusion

As mentioned above, there are several solutions which are commonly used to implement
ANN systems in hardware. Each of them shows both advantages and disadvantages, and
choosing one depends on some factors such as speed, area, cost, design time, and reliability.
Regarding speed and area, ASIC analog systems are considered to be the best choice for the
ANN implementation; however, these systems have some disadvantages, with high cost, large
design time, and low reliability. ASIC digital systems are more reliable compared to analog
counterparts, but they are slightly slower and smaller compared to analog ASIC systems in
terms of speed and area. FPGA implementations show a balance between the factors. Even
though they have slower speed and higher area than ASIC technologies, they are very favorable
regarding cost, design time and reliability. In addition, DSP chips are a good choice if design
time, cost and reliability are the top priority of implementation.

The survey also presented a brief overview of several ANN architectures, each of them
had both advantages and drawbacks. It is difficult to choose one which is suitable for many
applications. Additionally, there are many other ANNs which are not mentioned this paper.
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