A Low-overhead Fault tolerant Technique for
TSV-based Interconnects in 3D-IC Systems

Abderazek Ben Abdallah*, Khanh N. Dang’, and Yuichi Okuyama?
Adaptive Systems Labratory, Graduate School of Computer Science and Engineering
The University of Aizu, Aizu-Wakamatsu 965-8580, Japan
Email: {*benab, Iokuyama}@u—aizu.ac.jp, Tkhanh.n.dang@ieee.org

Abstract—3D-Network-on-Chips (3D-NoCs) are considered
as one of the most advanced and auspicious communication
methodologies for future IC designs by exploiting the benefits of
Network-on-Chips (NoCs) and 3D-Integrated Circuits (3D-ICs).
However, their reliability still remains a major problem due to the
vulnerability of Through Silicon Vias (TSVs). Because most of the
existing techniques rely on correcting the TSV defects by using
redundancy or employing routing algorithms, the TSV-cluster
defect tolerances encounter costly area and power consumption
penalties. In order to solve this issue, we propose a highly scalable
and low-overhead TSV management for 3D-NoC systems where
the TSVs of a router can be utilized by its neighbors and an
adaptive online algorithm is also performed to assist. With this
proposal, we aim to maintain a graceful performance for 3D-
NoCs without the need for redundant links or employing routing
algorithms.

Keywords—Through-Silicon-Via, 3D-Network-on-Chip, cluster
defect, fault-tolerance.

I. INTRODUCTION

In the last decade, the 3D-Network-on-Chip (3D-NoC)
paradigm [3], which is a result of the fusion of 3D-
Integrated Circuits (3D-ICs)and the mesh-based Network-on-
Chips (NoCs) [1], is considered as one of the most promising
architectures for IC design. As a consequence, the parallelism
and scalability of NoCs can be further enhanced in the third
dimension thanks to the short wire length and low power
consumption of the Through-Silicon Vias (TSVs), that role
the main inter-layer communication mediums. A TSV works
as an inter-layer wire in 3D-NoCs. By performing stacking
processes, TSVs are established and the two wafers can
connect through them. While TSVs bring many advantages
for 3D-NoCs, one of their major drawbacks is reliability.

The yield rates of 3D-ICs using TSVs have been considered
as a critical factor due to the imperfection of the manufacturing
process [14], [16]. In addition, due to the difference between
thermal expansion coefficients of the implementation materi-
als [15], 3D-ICs also encounter the stress issue. As reported
in [13], the temperature variation between two layers can reach
up to 10°C which negatively affects the devices. This can
accelerate the Electromigration, Time Dependent Dielectric
Breakdown and Thermal Cycling. In summary, TSVs in 3D-ICs
are more fault sensitive than the traditional components, not
only in the manufacturing phase; but, also during the operation
time. Therefore, the future 3D-ICs demand more efficient fault-
tolerance solutions.

The major TSV defects can be classified into three types:
Open (or void), Bridge, and Stuck-at. Existing works pre-
sented so far have dealt with the high fault-rate of TSVs in
different approaches: enhance the reliability of TSVs in the

manufacturing process [11]; design awareness [15]; recovery
the defected TSVs by using circuits [4], using redundancy [9],
[12], or Error Correction Codes [5]; and using an alternative
channel to avoid the defected TSV channel. Although these
works have impressively enhanced the reliability of TSV-based
systems, they are mostly suitable for random distribution of
TSV defects. Unfortunately, the cluster defect distributions
[9], [14], [17] are recently considered as the most realistic
ones. In order to deal with the cluster TSV defect, most
works aim to select a suitable grouping configuration [17] to
distribute TSVs on different positions [14] or to enhance the
redundancy correction rate [9]. Although these methods can
improve the reliability of the system, using extra redundancies
and complex arbitration penalty the area cost, wire latency
and power consumption. Moreover, if the number of assigned
redundant TSV is less than the number of defective TSVs, the
vertical connection is not maintained. Therefore, we observe
that with low utilization rates of the TSVs has been reported
in 3D-NoCs [8], a management solution can efficiently deal
with this issue.

This paper proposes a scalable TSV utilization algorithm
and architecture to tackle the cluster defect in inter-layer links.
To reduce this kind of defect, a router corrects its defected
TSV communication by choosing one of its four neighbor
TSV-clusters located on the same layer. To ensure timing
constraints, in the design stage, we put the TSVs of two
nearby routers in between them and a TSV-cluster is only
shared between its two neighboring routers. Therefore, the
solution can help 3D-NoCs to work around TSV-cluster defects
without the need of redundancy. As a consequence, reliability
at reasonable overhead is guaranteed. An extended version of
this work can be found in [6].

The paper is organized as follows. Section II depicts the
motivations and prior works. In Section III, we describe the
proposed TSV fault-tolerant architecture. The algorithm and
optimizations are later explained in Section IV. Section V
shows our evaluation and comparison results. Finally, Sec-
tion VI concludes the paper.

II. MOTIVATIONS AND PRIOR WORKS

The high defect-rate of TSVs negatively affects the final
yield. In [10], the authors report that 0.63% of the TSVs are
defected which leads the final yield without spare is only 15%.
Not only the manufacturing stage, TSVs under operation also
face several challenges with stress and thermal issues [15].
These make TSVs are one of the most vulnerable components
in 3D-ICs.

However, the TSV failure distribution is still one of the
matters that are still under investigation. In general, two main

assumptions for the failure distribution has been introduced:
Random [12] and Clustering distributions [9], [14], [17].
Fortunately, Random TSV defect can be efficiently handled
by using redundancy and recovery methods; but, Clustering
defects still remain as a challenging issue. In addition, TSV
misalignment [12], which is classified as a cluster defect,
also may casually occur due to the inaccuracy in design and
manufacturing. Due to the stress and thermal issues, the TSVs
may also be defected during operating. On the other hand,
Mean Time To Failure equations of 3D-ICs when affected by
Time Dependent Dielectric Breakdown, Thermal Cycling and
Electro-migration, shows an important role of the temperature
values. Because of the clustering effect on hot-spot areas in
3D-ICs, this may lead to the TSV-cluster defect.

As we early mention in the introduction, the existing works
have approached the TSV fault-tolerance using redundan-
cies [9], [12], supporting circuits [4], coding techniques [5] or
alternative channels [3]. Because the cluster defect is predicted
to be frequently occurred, the most efficient solution for
correcting random defects is grouping and adding redundancy.
Unfortunately, they are still inefficient and demand costly extra
area cost. Therefore, this paper focuses on fault-tolerance for
cluster defect. On the other hand, several works [8] have been
reporting the low utilization of the vertical connection using
TSVs in 3D-NoC where the authors tried to reduce the number
of TSVs to minimize the area overhead and maintain a low
degradation in terms of performance. Therefore, we propose
in this paper a low cost method for TSV fault-tolerance in 3D-
NoCs by exploiting the low utilization rates and the capacity
of using alternative channels.

ITII. PROPOSED TSV FAULT TOLERANCE ARCHITECTURE

In this paper, our solution handle the cluster defect by
sharing TSVs between neighboring routers. If a TSV-cluster
fails, its router find a healthy cluster from one of its neighbors
to maintain the connection. Moreover, we also present several
design optimizations to improve the reliability of the system
(Section IV-B).

A. Fault assumptions

Before we present the system structure, this subsection
clarifies the fault assumptions taken in this proposal. We
assume there are no random defects. Designers, who also
concern about the random defect, can use redundancies to
handle it. In this work, we consider an occurred fault makes
the whole cluster of TSVs defected. The detection modules,
e.g. Built-In-Self-Test module [7], are assumed to be existing
and connected to the fault-tolerance module. They are also
assumed to be synchronized to exchange the configurations
and faulty information.

B. System structure

Fig. 1 depicts a simplified layout example of 3 x 3 x 3 3D-
NoC system using the proposed TSV management. For each
vertical connection, each router needs a set of TSVs. Instead of
grouping all TSVs together, we divide them into four groups
in the design stage. As a result, every router has four TSV-
clusters and has a maximum of four nearby TSV-clusters (the
number of neighboring clusters is reduced in the borders). If
a TSV-cluster of a router is defected, the router selects one of
its four neighboring clusters as a replacement. Therefore, the
connection can be maintain. In overall, the need for redundancy
is not necessary with the low utilization rates of the vertical

connections. To ensure the timing constraints, every router has
to choose the closest TSV-cluster among its neighbor clusters.
Borrowing further TSV-clusters is not considered because of
the possible long wires that may create timing violations.
Moreover, by structuring a set of four clusters for each router,
the system can ensure the scalability of 3D-NoCs. Extending
and reducing the size do not involve any significant changes
in both architecture and algorithm wise.

Router }-=-==-"/7zs 7 /W//W
TSV "7 -
Landing |- - //W/ //M/M/ y

Pad

TSV
cluster

R
N
! ol
N

Fig. 1. Simplified block diagram illustrating the proposed system structure.

C. Sharing Circuit Design

| Sharing
Circuit

From Neighbours

(Weights, Control)
ToR(1,1,0) €
ToR(1,1,2) 24

To Neighbours
(Weights, Control)
ToR(1,1,0)
ToR(1,1,2)
ToR(1,0,1)
ToR(1,2,1)
From R(1,1,0
From R(1,1,2
From R(1,0,1
From R(1,2,1
Data Out
(N,E,SW,L)

ToR(1,2,1) «

From R(1,1,0)
From R(1,1,2)

From R(1,2,1)

Data In
(N.ESWL)

ToR(1,1,0) €
ToR(1,1,2) 24
ToR(1,0,1) <
ToR(1.2:1) 4=
From R(1,1,0)
From R(1.1,2) Iz
From R(1,0,1)
From R(1,2,1) wid,
From Nei
(Weights, Control)

ToR(1,1,0)
ToR(1,1,2)
ToR(1,0,1)
ToR(1,2,1)

From R(1,1,0)
From R(1,1,2)
From R(1,0,1)
From R(1,2,1)

To Neighbours
(Weights, Control)

Vertical
----4 connection’s
TSVs

Fig. 2. The TSV fault-tolerance architecture. Red rectangles represent TSVs.
S-UP and S-DOWN are the sharing arbitrators which manage the proposed
mechanism. CR stands for configuration register and W is the flit width.

In oder to borrow a TSV-cluster from a neighbor, every
router needs supporting/arbitrating modules. Fig. 2 shows the
wrapper of a 3D-Router. The additional supporting modules
that perform the sharing algorithm are later explained in
Section IV. There are two identical sharing modules (S-UP
and S-DOWN) for the two vertical up and down connections.
For each connection, the router has two configuration registers
(CR) for the input and output ports. In a 3D-NoC (e.g. Fig.
1), R(1,1,1) shares its TSV-clusters with its four neighbors:
R(1,1,0), R(1,1,2), R(1,0,1), and R(1,2,1). The input of a TSV-
cluster is shared between two routers. The output of a TSV-
cluster is also shared the same routers. In the case where this
TSV-cluster is defected, or borrowed, router can send its flits
by using one of the four neighboring clusters through a sharing
process.

As depicted in Fig. 2, the input and output ports can select
the data from: (1) its original TSV-cluster, (2) one of its four
neighboring clusters or (3) being disconnected. The selection
is based on the value of the 6-bit CR. Because the CR only
manages the connectivity, its value have to be set carefully
to avoid the possible conflict of TSV-cluster usage and to
optimize the performance. To this aim, an adaptive sharing
algorithm is needed.

IV. ADAPTIVE ONLINE SHARING ALGORITHM

Algorithm 1: TSV Sharing Algorithm.

// Weight values of the current router and its N
neighbors

Input: Weighteurrent, Weightneighbor[1 @ N|

// Status of current and neighboring TSV-clusters

Input: TSV _Statuscurrent[l : N|, TSV_Statuspeighpor(l : N]

// Request to link TSV-clusters to neighbors

Output: RQ_link[1 : N]

// Current router status

Output: Router_Status

foreach TSV _Statuscyrrent[i] do

-

2 if TSV _Statuscurrent[i] == “NORMAL” then
// It is a healthy TSV-cluster

3 RQ_link[i] = “NULL”

4 else

// It is a faulty or borrowed TSV-cluster

5 find ¢ in I:N with:

6 Weightneighbor(c] < Weighteurrent

7 Weightneighbor|c| is minimal

8 and TSV _Statuspcighbor|c] == “NORMAL";
9 if (c==NULL) then

return RQ_link[i] = “NULL"
return Router_Status = “DISABLE”

12 else
return RQ_link[i] = ¢
return Router_Status = “NORMAL”

15 end
16 end
17 end

In the previous section, we presented how a router can use
its nearby TSV-clusters to maintain the connection. In order
to deal with the TSV defects, every router need to arbitrate
and configure its CR values. We proposed an algorithm of
the arbitrating process to perform the mapping online so that
the system can react immediately to the newly defected TSV-
clusters and can consider the connectivity of the 3D-NoC
system.

[R(1,0,0] [R(1,3,8)) | Disabled CTNY] Normal TSV cluster — Sorrowing
Weight =1| Normal Weight=1| vertical Defected TSV cluster .
Router Connection gy Borrowed TSV cluster " Cancelling

Router The Borrowing

R, 10 1

Weight = i

we.gm:z . §.

Fig. 3. An example of the sharing algorithm on a 4 X 4 layer: (a) Initial state
with ten defected TSV-clusters; (b) Final result with six disabled routers.

Algorithm 1 shows the proposed algorithm for our sharing
mechanism where each router has a weight for each of the
vertical connections. This weight represents the connection’s
priority in sharing/borrowing and can be assigned at the design
process or can be updated during operation. At the initial stage,
the weights and the TSV-clusters states are exchanged between
routers with their neighbors. After knowing the weights and
the states, the algorithm performs the mapping process in
every router at the same time. If a TSV-cluster is defected,
its corresponding router finds from its neighbors a possible
candidate by relying on the following conditions:

o The weight of the candidate has to be smaller than the
current router.

e The candidate TSV-cluster has to be healthy and not
borrowed.

e The weight of the final candidate is the smallest among
all the possible candidates.

At the end of the algorithm, the router finds out the
possible candidate for borrowing. If no candidates were found,
the router’s vertical connection is disabled or turned into
Serialization (see Section IV-B). If there is a suitable candidate,
the router sends a request signal to the owning router to use its
TSV-cluster as a replacement for the defected one. The routers
having borrowed TSV-clusters also look for a replacement
among one of their neighbors. By using a weighted system,
the system can avoid race conditions and the disabled TSV-
clusters focus on smaller weight routers.

Fig. 3 shows an example of how the sharing algorithm
works on a 4 x 4 layer with ten defected TSV-clusters. Initially,
the routers in the center, which are predefined to have higher
TSV utilization rates, have higher weights than those at the
edges of the network, as depicted in Fig. 3(a). The sharing
algorithm selects the best candidates by following the rules
previously explained in Algorithm 1. As shown in the above
example, the chain of sharing leads to disabling the routers on
the edges. The final shape can be seen in Fig. 3(b). Instead of
having ten defected TSV-clusters, the algorithm only disables
six routers having the lowest weights. This is equivalent to
a 40% of reduction from a no fault-tolerant system. Thanks
to the weighting system, maintaining the connections of the
center routers, which have higher weights and utilize more
vertical communications, can reduce the impact of TSV defects
in terms of overall performance.

A. Weight adjustment

[R(1,0,0)]

Hra.0,21
'_—Welght =1 i

=)

[R(1,0,0)]
StWeight =1 ight= 0

DISABLED

| DISABLED

(a)

Fig. 4. Example of the weight adjustment performed to disable routers’
sharing: (a) Before weight update; (b) After weight update.

After applying the sharing mechanism, the disabled TSV-
clusters are usually shifted to areas of low weighted routers.
As depicted in Fig. 4, the three routers (R(1,0,0), R(1,0,1)
and R(1,0,2)) are disabled after the sharing process. However,

R(1,0,2) can borrow a TSV-cluster from R(1,0,1) to obtain a
full connection. However, the weight of R(1,0,2) is lower than
R(1,0,1) which prevents a borrowing process. Therefore, we
need to perform an optimization called weigh adjustment.

To perform this optimization, the disabled routers, after
the sharing process by Algorithm 1, are taken to a new
process. First, every disabled router counts the number of
possible TSV-clusters that it can borrow. The possible clusters
alsos consist of clusters from a higher weight and disabled
routers. Since these routers (R(1,0,0), R(1,0,1) and R(1,0,2))
are disabled, their TS V-clusters are free to be taken. At the end
of this stage, R(1,0,0), R(1,0,1) and R(1,0,2) have 1, 3, and 1
borrowed/defected TS V-clusters and are able to take O, 1 and 1
TSV-cluster from their disabled neighbors, respectively. At the
second stage, the router checks whether it can take the disabled
router’s cluster to obtain a full connection. Because R(1,0,2)
has one borrowed cluster and is able to borrow another one
from R(1,0,1), its weight is kept. The other routers (R(1,0,1)
and R(1,0,0) weights are reduced to 0. As a result, R(1,0,2)
can borrow a TSV cluster from R(1,0,1) despite the fact that
it has a lower weight at the initial stage. The result is shown
in Fig. 4 (b) where R(1,0,2) vertical connection is re-enabled.

B. Design optimization

Without adding redundancy, borrowing TSV-clusters to
work around the defected ones makes some routers to have less
than four accessible clusters. As a result, the communication
of these routers have been disabled. To tackle this problem,
the naive solution is using a fault-tolerant routing algorithm
to re-route the packets to a neighboring router. However, we
observe that the disabled routers may have a couple of clusters.
Therefore, we implement the Serialization technique to help
the vertical connection establishing with less than four TSV-
clusters.

For the serialization, the router needs at least one TSV-
cluster. The serialization mode (1:4 or 1:2) depends on the
number of usable clusters. In order to perform serialization,
the up and down directions’s output of the crossbar is stored
in a register. The serialization module transmits flits over the
remained clusters within multiple clock cycles.

V. EVALUATION RESULTS
A. Evaluation Methodology

The proposed system was designed in Verilog-HDL, syn-
thesized and prototyped with commercial CAD tools. We use
NANGATE 45nm library and NCSU FreePDK TSV. The op-
erating voltage is 1.1V. The TSV’s size, pitch, and Keep-out-
Zone are 4.06pm x 4.06um, 10 pm, and 15 pwm, respectively.
The system use a 7-port router for 3D Mesh-based topologies.
The flow-control is Stall-Go and the forwarding mechanism
is Wormhole. The input buffer and flit width are 4 and 44,
respectively.

First, we evaluate the defect-rate by inserting faults (de-
fects) into TSV-clusters and measure the reliability of the
proposed 3D-NoC system. Second, we run both synthetic and
realistic traffic patterns as benchmarks to study the perfor-
mance of the proposed system. We also comparison to the
baseline model [2]. Third, we design in hardware and evaluate
the complexity of a single 3D router.

B. Defect-rate evaluation
In this section, we provide the impact of the different
defect-rates. To demonstrate the scalability of the proposed

architecture, we set up several layer sizes: 2 X 2, 4 X 4,
8 x 8, 16 x 16, 32 x 32, and 64 x 64. TSVs are grouped in
clusters as presented in Section III. We also use multiples TSV-
cluster defect-rates: from 5% to 50%. Because our technique
focuses on the cluster defect, random defects are assumed to
be dealt with typical redundancy methods. The position of
cluster defects are generated randomly and we perform the
proposed algorithms with 100K different samples and calculate
the average results. We measure the ratio of four types routers
in the layer: Normal (healthy or corrected), Serial (router using
serialization) and Disabled (disabled routers). We also compare
the obtained results with “Normal w/o FT” (Normal without
Fault-Tolerance), where no fault-tolerance method is used and
the router vertical connection having defects is disabled.

As shown in Fig. 5, the system operates without disabling
any vertical connections with fault-rates under 50%. Thanks to
the Serialization techniques, the routers having less than four
clusters are still able to work. Even at less than 20% of defect-
rate, there are less than 10% of serialization connections in all
simulated layer sizes. With 50% of defect-rate and a 2 x 2
layer size, the disabled router rate is negligible with about
1.565%. This can be easily dealt using a light-weight fault-
tolerant routing algorithm. When the layer size increases to be
larger than 8 x 8, the number of disabled connections is mostly
insubstantial. At 50% defect-rate, the disabled router ratio is
nearly 0.63%, 0.50%, 0.44% and 0.42% with 8 x 8, 16 x 16,
32 x 32, and 64 x 64 layer sizes, respectively. However, these
defect-rates are extremely high; thus, our proposed mechanism
can be considered as a highly reliable.

In comparison to the system without fault-tolerant methods,
there is a significant improvement in terms of healthy connec-
tions, especially at large layer sizes. In Fig. 5, the percentage of
routers having four healthy TSV-clusters is represented by the
“Normal w/o FT” curve. At 50% defect-rate, the average ratio
of normal routers has been improved by 29.83%, 186.26%,
280.76%, 324.42%, 346.74%, and 257.79% for 2 x 2, 4 x 4,
8x 8, 16x 16, 32x 32, and 64 x 64 layer sizes, respectively. The
improvements are lesser with small layer sizes such as: 2 x 2
or 4 x 4. However, thanks to the Serialization, the workable
connection rates have nearly reached 100%.

C. Performance Evaluation

The previous section has proved the reliability of the
proposed solution. In this section, we evaluate the system
performance under TSV-cluster defects. To evaluate the perfor-
mance of the proposed system and keep fair comparisons to the
baseline, we adopted both synthetic and realistic traffic patterns
as benchmarks. We selected Transpose, Uniform, Matrix-
multiplication, and Hotspot 10% as the synthetic benchmarks.
For realistic benchmarks, we chose H.264 video encoding sys-
tem, Video Object Plane Decoder (VOPD), Picture In Picture
(PIP) and Multiple Window Display (MWD). These realistic
applications are carefully selected to study the performance of
the system. The configurations of these benchmarks are shown
in Table L.

1) Latency Evaluation: In this experiment, we evaluate the
performance of the proposed architecture in terms of Average
packet Latency (APL) over various benchmark programs and
defect-rates. The simulation results are shown in Fig. 6 (a).
From this graph, we notice that with a 0% of defect-rate, the
system’s tolerance has similar performance in comparison to
the baseline system.

Ratio of router
configuration (%)
o
o
T

50 10.0 15.0 20.0 25.0 30.0 35.0
TSV cluster defect rate (%)

(a) 2x2 (4 routers, 16 TSV clusters)

40.0 45.0 50.0

Ratio of router
configuration (%)
()

o
T

50 10.0 15.0 20.0 25.0 30.0 35.0 40.0
TSV cluster defect rate (%)

(c) 8x8 (64 routers, 256 TSV clusters)

45.0 50.0

7 7 77 7

Ratio of router
configuration (%)
[

o
T

50 10.0 150 20.0 25.0 30.0 350 40.0 450 50.0
TSV cluster defect rate (%)

(e) 32x32 (1024 routers, 4096 TSV clusters)

Fig. 5.

Disable mmmmm Normal w/o FT

Ratio of router
configuration (%)
o
o
T

50 10.0 150 20.0 25.0 30.0 35.0
TSV cluster defect rate (%)

(b) 4%4 (16 routers, 64 TSV clusters)

Ratio of router
configuration (%)
()

o
T

50 10.0 150 20.0 25.0 30.0 35.0 40.0 450 50.0
TSV cluster defect rate (%)

(d) 16x16 (256 routers, 1024 TSV clusters)

Ratio of router
configuration (%)
(&)

o
T

50 10.0 150 20.0 25.0 30.0 350 40.0 450 50.0
TSV cluster defect rate (%)

(f) 64%x64 (4096 routers, 16384 TSV clusters)

Defect-rate evaluation: (a) Layer size: 2 X 2 (4 routers, 16 TSV clusters); (b) Layer size: 4 x 4 (16 routers, 64 TSV clusters); (c) Layer size: 8 X 8

(64 routers, 256 TSV clusters); (d) Layer size: 16 x 16 (256 routers, 1024 TSV clusters); (e) Layer size: 32 x 32 (1024 routers, 4096 TSV clusters); (f) Layer

size: 64 X 64 (4096 routers, 16384 TSV clusters).

Baseline T3 0% Zz2a 1% —3 5% = 10% — 20% C——3 30% ==X
100 F N 0.7 - el
0.6 -
80
0.5 |
04

Average Latency (cycles/packet)
(2]
o
T

03 -

Throughput (flit/node/cycle)
N
T

o o
=
T

oo, _

 dilad ..l

Transpose Uniform Matrix Hotspot VOPD H.264
(a)

Fig. 6. Evaluation result: (a) Average Packet Latency; (b) Throughput.

TABLE 1L SIMULATION CONFIGURATIONS.
Benchmark Matrix Transpose | Uniform Hotspot
Network Size (x,y,x) (6,6, 3) (4,4,4) (4,4,4) (4,4,4)
#Packets 1,080 640 8,192 8,192
Packet’s Size 10 10 107 10
Benchmark H.264 VOPD MWD PIP
#Tasks 11 4 8 4
Network Size (x,y,x) (3,3,3) (3,2,2) (2,2,3) (2,2,2)
#Packets 8,400 3,494 1,120 512
Packet’s Size 10 10 10 10

“For the hot spot nodes, there are additional 10% of flits.

When we increase the defect-rates in the proposed sys-
tem, it has demonstrated additional impacts on APL. At a
1% fault-rate using Matrix, Uniform, Transpose, and Hotspot

o

Transpose Uniform Matrix Hotspot VOPD H.264
(b)

10% benchmarks, the system increases the APL by 83.24%,
64.46%, 11.30% and 66,55%, respectively. These high impacts
are due to the occurrence of bottlenecks inside the network
caused by Serialization. The serialization is already a bottle-
neck technique. These bottlenecks effects are even higher at a
30% of defect-rate where the APL can be over 3 times that of
the 0% case in the synthetic benchmarks.

With H.264, PIP, MWD and VOPD benchmarks, the APL
incrementation are significantly reduced due to the low uti-
lization of TSV. We can observe the identical performance
of VOPD benchmark from a 1% to a 30% defect-rates. With
the PIP benchmark, the system under 1% defect-rate has
similar performance to 0% thank to the optimization process
which disables the unused clusters. With the MWD and H.264

benchmarks, the impact on APL is gradually increased when
increasing the defect-rate. Even at a 30% of defect-rate, the
APL values of MWD and H.264 are increased by 129.91%
and 60.04%, respectively. Because there is no optimized rout-
ing technique for these benchmarks, the bottleneck effect is
expected to happen.

2) Throughput Evaluation: Fig. 6 (b) depicts the through-
put evaluation with different benchmarks. At 0% defect-rate,
the proposed system’s throughput is similar to that of the
baseline. When defects are injected into the system, we can
observe some degradation in throughput caused by the bottle-
neck effects on the system. Similar to APL, the throughput
degradation on realistic traffic benchmarks (VOPD, H.264,
MWD and PIP) are significantly better than the synthetic
ones. The system at a 20% defect-rate provides a decreased
throughput by 71.17%, 64.36%, 67.44%, and 64.37% for
Transpose, Uniform, Matrix, and Hotspot 10%, respectively.
At the same defect-rate, VOPD, MWD, PIP and H.264 have
46.03%, 50.04% 28.17%, and 19.79% of throughput degrada-
tion.

Although there is a considerable degradation in the
throughput evaluation, the system still maintains over 0.1
fit/node/cycle in the highly stressed benchmarks, even at
extremely high defect-rates.

D. Router Hardware Complexity

TABLE II. HARDWARE COMPLEXITY OF A SINGLE ROUTER.
Area Power Speed
Model (wm?) (mW) (Mhz)
Static [Dynamic | Total

Baseline router [2] 18873 | 5.1229 0.9429 6.0658 | 925128
Router 29,780 | 10.017 22574 | 123144 | 613.50

Pronosal | Seralization 3318 | 09877 02807 12634 -

OPOSA TSV Sharing || 5,740 | 0.7863 0.2892 1.0300 -
Total 38838 | 117910 | 2.8273 | 14.6128 | 537.63

Table II illustrates the hardware complexity results of the
proposed router in terms of area, power (static, dynamic, and
total), and speed. In comparison to the router in which we
implement the proposed techniques, the area and power con-
sumption have increased by 30.42% and 18.66%, respectively.
The maximum speed has also slightly decreased by 12.37%.
In comparison to the baseline model, the proposed system
almost doubles the area cost and power consumption while
decreasing the maximum frequency by about 50%. However,
the TSV sharing and Serialization modules incur reasonable
area and power consumption overheads which are 47.99%
and 38.89% in comparison to the baseline router, respectively.
Here, the TSV Sharing module handles the sharing algorithm
and the Serialization module helps the router communicate in
Serialization mode.

VI. CONCLUSION AND FUTURE WORK

This paper presented an adaptive and scalable sharing
methodology for TSVs in 3D-NoC systems to deal with the
TSV-cluster defects. The results have proven the system ability
to provide high reliability that can reach up to 346.74% in-
crease in functional routers. Moreover, the proposed approach
can correctly work with a reasonable degradation, even under
a 30% of defect-rate. The hardware complexity has shown
a small overhead in terms of area cost (30.42%), power
consumption (18,66%) and maximum frequency (12,37%) of

router’s logic. Since no TSV redundancy is not required in
the proposed architecture and algorithm, we show that it is
possible to provide a highly reliable system while maintaining
the overhead reasonable.

As future work, the random TSV-defect is also an addi-
tional challenge for our 3D-NoC system. Furthermore, degra-
dation factors on 3D-NoCs such as: thermal dissipation, stress,
operating voltages should be investigated.

REFERENCES

[1] A. B. Abdallah and M. Sowa, “Basic Network-on-Chip Interconnection
for Future Gigascale MCSoCs Applications: Communication and Com-
putation Orthogonalization,” in Proc. of the Symp. on Science, Society,
and Technology, 2006, pp. 1-7.

[2] A. Ben Ahmed and A. Ben Abdallah, “LA-XYZ: low latency, high
throughput look-ahead routing algorithm for 3D network-on-chip (3D-
NoC) architecture,” in IEEE 6th Int. Symp. on Embedded Multicore
Socs. 1EEE, Sep 2012, pp. 167-174.

, “Architecture and design of high-throughput, low-latency, and
fault-tolerant routing algorithm for 3D-network-on-chip (3D-NoC),”
The Journal of Supercomputing, vol. 66, no. 3, pp. 1507-1532, 2013.

[4] M. Cho et al., “Design method and test structure to characterize and
repair TSV defect induced signal degradation in 3D system,” in Proc.
Int. Conf. on Computer-Aided Design, 2010, pp. 694—697.

[5] K.N. Dang et al., “A low-overhead soft-hard fault-tolerant architecture,
design and management scheme for reliable high-performance many-
core 3D-NoC systems,” The Journal of Supercomputing, vol. 73, no. 6,
pp. 2705-2729, 2017.

, “Scalable design methodology and online algorithm for tsv-
cluster defects recovery in highly reliable 3d-noc systems,” IEEE
Transactions on Emerging Topics in Computing, in press.

[71 Y.-J. Huang and J.-F. Li, “Built-in self-repair scheme for the TSVs
in 3-D ICs,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 31, no. 10, pp. 1600-1613, 2012.

[8] Y.J. Hwang et al., “3D Network-on-Chip system communication using
minimum number of TSVs,” in 2011 Int. Conf. on ICT Convergence.
IEEE, 2011, pp. 517-522.

[9] L. Jiang, Q. Xu, and B. Eklow, “On effective through-silicon via
repair for 3-D-stacked ICs,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst, vol. 32, no. 4, pp. 559-571, 2013.

[10] U. Kang et al, “8Gb 3D DDR3 DRAM using through-silicon-via
technology,” in IEEE Int. Solid-State Circuits Conf.-Dig. of Tech.
Papers. 1EEE, 2009, pp. 130-131.

[11] J. U. Knickerbocker et al., “Three-dimensional silicon integration,” /BM
J. Research and Development, vol. 52, no. 6, pp. 553-569, 2008.

[12] I Loi et al., “A low-overhead fault tolerance scheme for TSV-based
3D network on chip links,” in Proc. 2008 IEEE/ACM Int. Conf. on
Computer-Aided Design, 2008, pp. 598-602.

[13] Y. J. Park et al., “Thermal Analysis for 3D Multi-core Processors with
Dynamic Frequency Scaling,” in IEEE/ACIS 9th Int. Conf. on Computer
and Information Science, Aug 2010, pp. 69-74.

[14] F Ye and K. Chakrabarty, “TSV open defects in 3D integrated circuits:
Characterization, test, and optimal spare allocation,” in Proc. 49th
Annual Design Automation Conf. ACM, 2012, pp. 1024-1030.

[15] T. Zhang et al., “Temperature-aware routing in 3D ICs,” in Asia and
South Pacific Conf. on Design Automation, Jan 2006, pp. 309-314.

[16] J. Zhao et al., “Overview of 3D Architecture Design Opportunities and
Techniques,” IEEE Des. Test., vol. PP, no. 99, pp. 2168-2356, Jul 2015.

[17] Y. Zhao et al., “Cost-effective TSV grouping for yield improvement of
3D-ICs,” in Asian Test Symp. 1EEE, 2011, pp. 201-206.

(3]

(6]

