

Information Processing Society, Tohoku Branch Conference, Feb. 10, 2018

Animal Recognition and Identification with Deep Convolutional Neural Networks for Farm Monitoring

<u>Ryunosuke Murakami</u>, Yuichi Okuyama, Abderazek Ben Abdallah Graduate School of Computer Science and Engineering, Adaptive Systems Laboratory The University of Aizu, Japan

Outline

- Background
- Motivation
- Research goal
- Approach
- Evaluation
- Conclusion

Background

- Due to the increasing demand in the agricultural industry, the need to effectively grow and protect a plant and increase its yield is necessary
- It is important to monitor the plant during its growth period and protect it from animals (pig, wolf, etc.) at the time of harvest

Fig 1. Farm and wild animals

Fig 2. Olive and Date Tree Diseases

Motivation

- Monitoring the plants from plantation to harvesting is necessary for better productivity
- Smart farming needs right decision and monitoring tools for better productivity, quality and profit
- Artificial neural network concept is efficient for image processing

Convolutional Neural Network

- Efficient to object recognition
 - Process data while keeping the shape of image
- Behavior is similar to visual cortex
 Performance is close to human-level
- Learn *feature vector* automatically from data

- Develop an efficient FARM monitoring system for better productivity, quality and profit based on artificial neural network concept:
 - Hardware implementation of Deep Convolutional Neural Network on FPGA
 - Evaluation of real hardware complexity (power and area) and performance (recognition accuracy, time)
- The purpose is to monitor strange animals (pig, etc) and diseases on the stem/leaf/fruits of the crop

System overview

Fig 4. System overview: OASIS FMS-1

Flow of recognition system

Fig 5. Flow chart of recognizer

- Region proposal
 - 1. Create initial region with pixel
 - 2. Group the similar regions
 - 3. Continue "2" until the whole image becomes a single region

出典:「Rich feature hierarchies for accurate object detection and semantic segmentation」

Approach

1. Software implementation by *Python*

- Design D-CNN using *Chainer* framework
- 2. Implement selective-search and integrate
 - Region proposal for object position
- 3. Hardware implementation on FPGA by HDL
 - Install parameters already learned

My network structure

Fig 5. network structure

Dataset

- Collected from ImageNet
- Image: 32x32 pixel, channel = 3(RGB)
- Distribution of original data
 - Pig images: 685
 - Other images: 800

Table 1. Data distribution

Class	Train	Valid	Test
Pig	549	68	68
Other animals	664	68	68

- Augmented training data twice
 - Original data(Training): 1,213
 - Augmented data: 2,426

[applied image conversion]

- 1. Slide the pixels randomly within range $(-4 \sim 4)$
- 2. Fill in "0" with empty space
- 3. Flip horizontal randomly

In the following experiments, 3 learning methods were compared

Table 2. Learning methods

Learning method	Contents
Momentum SGD	Optimized by gradient of loss function and learning rate is decreased with gradient
AdaGrad	Learning rate decreases with scale of weights
Adam	Combined with Momentum and AdaGrad

Evaluation configurations

- Learning parameters
 - Batch size: 128
 - Iterate num: 100
 - Learning decay: 0.1 times in each 20 epoch
- Experiment environment

Table 3. Machine spec

OS	Ubuntu 16.04.3 LTS
CPU	Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz
GPU	GeForce GTX 1060
Language	Python (ver: 2.7.13)
Library	Chainer (ver: 2.0.2)

Evaluation result - Best Model

[**Distribution rate**] Data(1221) = {pig: 549, oth: 664}

[Batch size] mini_batch(128) = {pig: 64, oth: 64}

[Network structure] Conv1(filter=16, stride=1, pad=2) Conv2(filter=32, stride=1, pad=2) Conv3(filter=32, stride=1, pad=2) 11=L.Linear(4 * 4 * 32, 1000), 12=L.Linear(1000, 2)

[Learning parameters] --optimizer: Adam --iter 100 --lr_decay_iter 20 -- Actication: ReLU Best test accuracy: 92.647

Accuracy evaluation with different filter numbers

Table 4. Evaluation with network

	conv1		conv2	conv3	accuracy	elapsed time
					error	elapsed time
		64	64	64	7.353	0.184
		32	64	64	9.559	0.136
		16	64	64	10.294	0.117
		64	32	64	9.559	0.154
ase	line	32	32	64	8.824	0.114
		16	32	64	11.765	0.104
		64	64	32	8.088	0.178
	0	32	64	32	8.088	0.128
best	2	16	64	32	9.559	0.109
		64	32	32	9.559	0.148
		32	32	32	10.294	0.11
Best	1	16	32	32	7.353	0.1

- Conv1,2,3 : each convolutional layer
- Error = 100 * (1 accuracy)
- Accuracy: ratio of concordance
 with correct label
- Elapsed time(µs) is calculated to batch data(128 images) classification

Table 5. Error rate evaluation with different learning method

Network				(Time: µs)
(filter	momentum-	Adam	adaGrad	
number)	SGD(error/time)	(error/time)	(error/time)	
(16, 32, 32)	<u>7.353/0.1</u>	9.559/0.097	12.5/0.097	
(32, 32, 64)	8.824/0.114	9.559/0.115	19.118/0.114	
(32, 64, 32)	8.088/0.128	8.823/0.125	13.235/0.128	

Table 6. Error rate evaluation with different Activation function

(Time: µs)

network	ReLu	sigmoid	tanh
(16,32,32)	7.353/0.1	11.029/0.099	8.088/0.101
(32,32,64)	8.824/0.114	11.765/0.114	8.824/0.112
(32,64,32)	8.088/0.128	8.824/0.127	9.559/0.127

- This paper presented an Animal Recognition and Identification with Deep Convolutional Neural Networks for Farm Monitoring
- As a first step, the system was designed and evaluated in software
- Evaluation results shows that the system achieves 92.647 accuracy and 0.1µs

 As a future work, we intend to design the system in hardware (Verilog and FPGA) and evaluate its real performance, complexity, and power consumption

Thank you for your kind attention.