

Information Processing Society, Tohoku Branch Conference, Feb. 10, 2018

Hardware Design of a Leaky Integrate and Fire Neuron Core Towards the Design of a Lowpower Neuro-inspired Spikebased Multicore SoC

Kanta Suzuki, Yuichi Okuyama, Abderazek Ben Abdallah School of Computer Science and Engineering Adaptive Systems Laboratory The University of Aizu, Japan

Background

- NASH Architecture Overview
- Research Contribution
- •Neuro-core Architecture
- Design & Evaluation Result
 Conclusion and Future Work

Background

- The architecture of conventional computer systems is very different from the organization of the brain.
- Silicon circuits generally use a global clock to coordinate activities while the brain operates in an asynchronous manner.
- Memory and computation circuits in conventional computers are separated, while memory and computation appear to be tightly integrated in brains.
- The fan-out of a CMOS element is small relative to the thousands of connections made by an individual neuron to others.

Idd/St vs. Neuro-inspired Computing

Dendrite

Synapse

Load-Store Computing

- High Power -
- Storage and computation are separated
- Poor at recognition

- Low Power
- Storage and computation are not separated
- Good at recognition

Simple Neuron Organization

Background

- NASH Architecture Overview
- Research Contribution
- •Neuro-core Architecture
- Design & Evaluation Result
 Conclusion and Future Work

Neuro-inspired ArchitectureS in Hardware - NASH

- NASH processes data directly coming from sensors via 3d-TSV → no need to go from sensors to memory and back to the processor.
- High throughput applications require more off-chip (~20Gbps) bandwidth.

SRAM based Neuro Processing Core (NPC)

- Each core processes a collection of N neurons each with M synaptic weights Wij.
- 8-bits are used to store the synaptic weights in SRAM.
- Every neuron input and output are also 8-bit wide.

Neuro-inspired ArchitectureS in Hardware - NASH

Neuro-inspired ArchitectureS in Hardware - NASH

- Background
 NASH Architecture Overview
- Research Contribution
- LIF Neuro-core Architecture
- Design & Evaluation Result
 Conclusion and Future Work

Research Contribution

• This work presents a hardware design of a Leaky Integrate and Fire Neuron-Core to be integrated with a a Low-power Neuro-inspired Spikebased Multicore SoC

- Background
- NASH Architecture Overview
- Research Contribution
- LIF Neuro-core Architecture
- Design & Evaluation Result
 Conclusion and Future Work

Leaky Integrate and Fire Spiking Neuron Model

Integration & Fire

A SC

Neuro-core Architecture

Hardware structure and flow of LIF neuron

Neuro-core Architecture

Architecture visualization

- Membrane potential signed integer 8bits (-128,127)
- Spike input 1bit (0,1)
- Spike output 1bit (0,1)
- Synaptic weights signed integer 8bits (-128,127)
- Neuron threshold signed integer 8bits (-128,127)
- Leak value unsigned integer 8bits (0,255)

- Background
- NASH Architecture Overview
- Research Contribution
- LIF Neuro-core Architecture

Design & Evaluation Result Conclusion and Future Work

Design & Evaluation Methodology

- The Neuro-core was designed in Verilog HDL
- Synthesis with Quartus II and Cadence
- Evaluation of:
 - Correctness
 - Power
 - Frequency
 - Area

Hardware Design Result

Table 1: Area Evaluation

Item	NC-1N	NC-4N
Combinational Area	186.998000 μm	562.856001 μm
Noncombinational Area	47.88002 μm	213.864000 μm
Total Cell Area	234.878002 μm	776.720001 μm

Table 3: Power Consumption Evaluation

ltem	NC-1N	NC-4N
Cell Internal Power	6.9680 μW	20.5040 μW
Net Switching Power	4.8271 μW	14.8272 μW
Total Dynamic Power	11.7950 μW	35.3312 μW
Cell Leakage Power	4.6943 μW	14.3147 μW

Placement of LIF-1N (Left) and LIF-4N (right)

Hardware Design Result

This case each synapsys weights is 1. Threshold value is 8.

If membrane potential >= threshold Firing!

- Background
- NASH Architecture Overview
- Research Contribution
- LIF Neuro-core Architecture
- Design & Evaluation Result
- Conclusion and Future Work

Conclusion and Future Work

- This work presents a hardware design and evaluation of a LIF Neuron-Core to be integrated with a Low-power Neuro-inspired Spike-based Multicore SoC (NASH)
- For accurate hardware complexity, the Neuro-core was designed and evaluated in hardware with several CAD tools.
- Evaluation results show that the designed Neuro-core (1 neuron) consumes about 155.36 mW and 169.32 mW (4 neurons), which is acceptable.

Conclusion and Future Work

• In future work, we intend to integrate the LIF core in our NASH system and evaluate its real performance with a real application, such as image recognition.

Thank you for your attention.