Efficient Optimization and Hardware Acceleration of CNNs towards the Design of a Scalable Neuro-inspired Architecture in Hardware

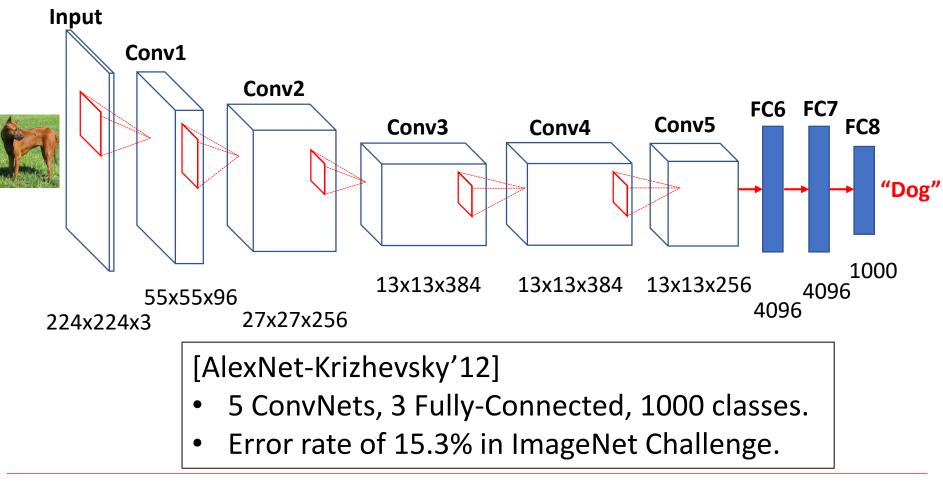
<u>The H. Vu</u>, Ryunosuke Murakami, Yuichi Okuyama, Abderazek Ben Abdallah

University of Aizu Graduate School of Computer Science and Engineering Adaptive Systems Laboratory

BigCom2018, January 15-18, 2018, Shanghai, China

Convolution Neural Network

CNNs are attractive in computer vision tasks such as image classification.



Implementation Platforms for ANNs

	Analog ASIC	Digital ASIC	FPGA	Processor Based	Parallel Computer			
Speed	+++	++	+	-	+			
Area	+++	++	+	_				
Cost			++	++	_			
Design time			++	+++	+			
Reliability		+	++	++	++			

--: very unfavourable, -: unfavourable, +: favourable, ++: very favourable, +++: highly favourable [Omondi'06]

\rightarrow Balancing

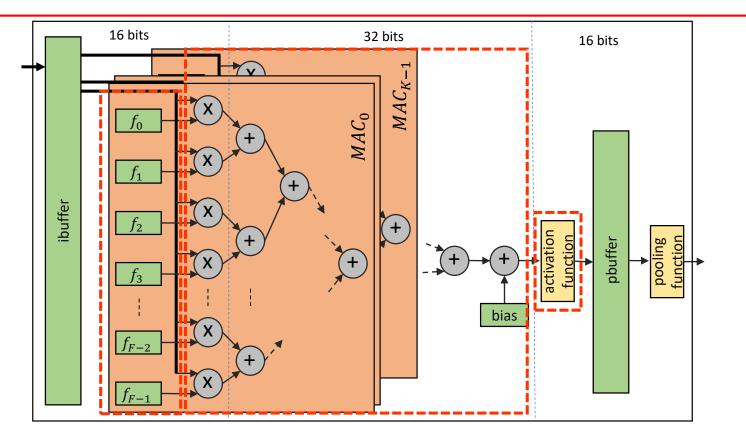
Related works

- [Yongmei'15] proposed an accelerator for image recognition based on CNN: Vertex 7 FPGA, 11-bits fixed-point precision. Low accuracy (96.8% for MNIST)
- [Ghaffari'16] presented two FPGA based accelerators for CNN using high level synthesize. High latency (2ms and 51ms for one MNIST example).
- [Zhou'15] introduced FPGA design for PCANet. This architecture achieved high accuracy (99.46% for MNIST) and short execution time 7.6µs/example but using a significant amount of area cost.

Paper contributions

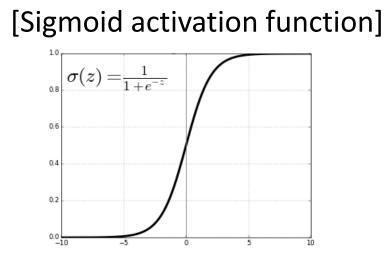
- An FPGA-based CNN architecture has an efficient balance between hardware complexity, execution time, and accuracy:
 - Based on a pipeline processing unit with three layers of neural processing.
 - Use high accuracy approximation for implementing activation function.
 - Use off-chip learning to reduce hardware complexity and take full advantage of the software calculation precision.

Neural processing unit

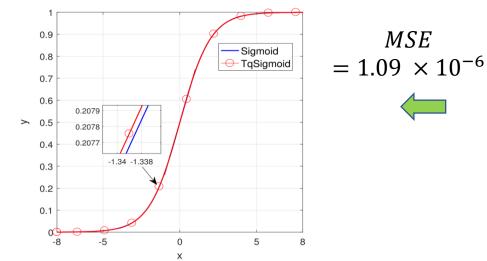


- Off-chip learning.
- Fixed point calculation and Rounding-to-nearestinteger method.
- Activation function approximation

Activation function Appoximation



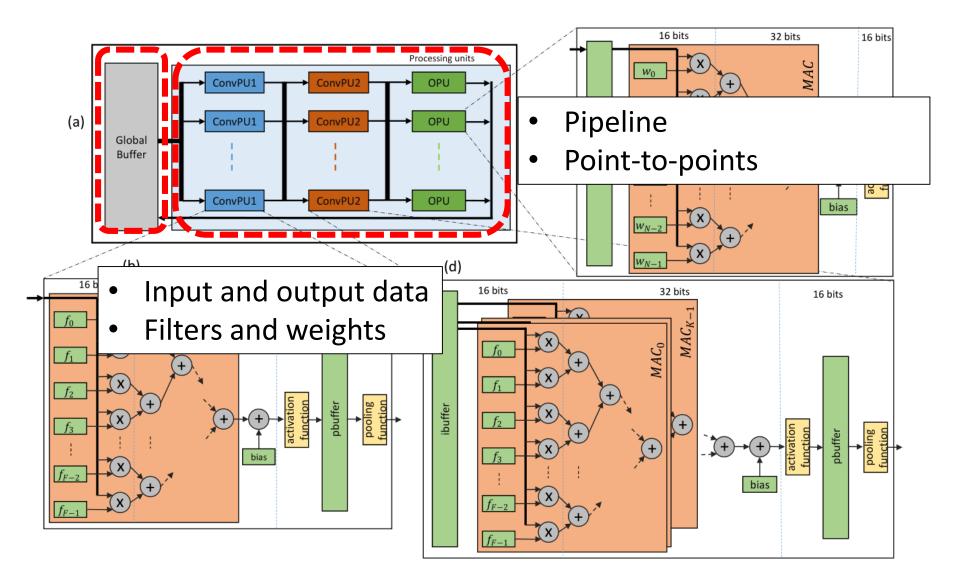
[Sigmoid approximation result]



[Twenty-five piece-wise intervals for sigmoid function approximation]

Interval	Function Form			
(1,1)	y = 0.2383x + 0.5000			
[-2,-1]	$y = 0.0467x^2 + 0.2896x + 0.5118$			
[-3,-2)	$y = 0.0298x^2 + 0.2202x + 0.4400$			
[-4,-3)	$y = 0.0135x^2 + 0.1239x + 0.2969$			
[-5,-4)	$y = 0.0054x^2 + 0.0597x + 0.1703$			
[-5.03,-5)	y = 0.0066			
[-5.2,-5.03)	y = 0.0060			
[-5.41,-5.2)	y = 0.0050			
[-5.66,-5.41)	y = 0.0400			
[-6,-5.66)	y = 0.0030			
[-6.53,-6)	y = 0.0020			
[-7.6,-6.53)	y = 0.0010			
[-∞,-7.6)	y = 0			
[1,2)	$y = -0.0467x^2 + 0.2896x + 0.4882$			
[2,3)	$y = -0.0298x^2 + 0.2202x + 0.5600$			
[3,4)	$y = -0.0135x^2 + 0.1239x + 0.7030$			
[4,5)	$y = -0.0054x^2 + 0.0597x + 0.8297$			
[5,5.0218)	y = 0.9930			
[5.0218,5.1890)	y = 0.9940			
[5.1890,5.3890)	y = 0.9950			
[5.3890, 5.6380)	y = 0.9960			
[5.6380,5.9700)	y = 0.9970			
[5.9700,6.4700)	y = 0.9980			
[6.4700,7.5500)	y = 0.9990			
[7.5500, +∞)	<i>y</i> = 1			

System Architecture



Evaluation methodology

- Application: handwritten digit recognition with MNIST dataset.
- Implementation:
 - *Hardware*: Verilog HDL, Vivado 2017.1, Virtex-7 v2000tflg1925-1.
 - Software: Matlab, 3.40 GHz Intel Core-i7 4770 and 16 GB of RAM.
 - Off-chip learning.
- Objectives:
 - Hardware complexity.
 - Performance.
 - Accuracy.

Result (1/3)

[Area cost]

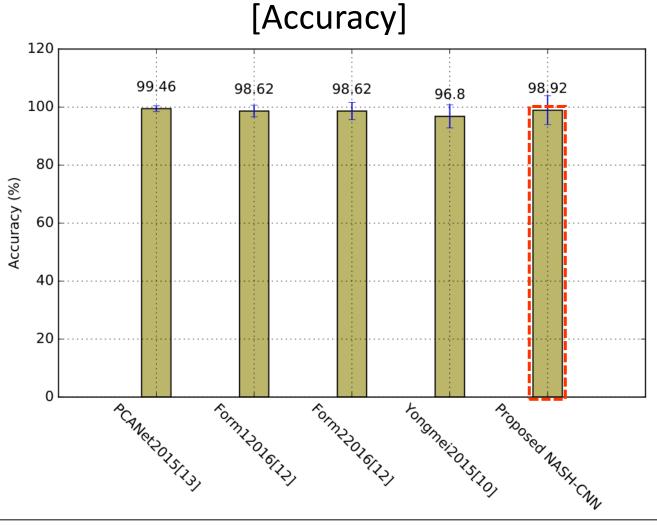
Parameters/Systems	PCANet'15	Form1'16	Form2'16	Yongmei'15	Proposed work
Target device	Virtex-7 980T	Xilinx Zynq	Xilinx Zynq	Virtex-7 vx485tffg17 61-2	Virtex-7 v2000tflg19 25-1
FF/Register(F/R)	358848-R	54075-F	35399-F	66364-F	18299-F
LUT	265460	14832	39879	51125	65386
BRAM	64 (36E1)	27	3	0	0
DSP	3599 (48E1)	20 (48E)	90 (48E)	638 (48E	1095 (48E1)
Precision	-	25-bits fixed- point	25-bits fixed- point	11-bits fixed-point	16-bits fixed-point

- Smallest number of flip-flop
- Figures for proposed work are less than PCANet'15

Result (2/3)

Speed up 15.35X compared to software implementation

Result (3/3)



• Higher compared to the others excepting PCANet

Conclusion

- Architecture for hardware-based CNNs is proposed and implemented.
- Evaluation results show that the system achieves an efficient trade-off between area cost, accuracy, and latency.
- Furthermore, the current architecture is our first step towards the design of scalable spiking architecture in hardware based on our 3D Network-on-Chip architecture.

Thank you for your attention! THE END